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Fractal properties of human heart period variability:
physiological and methodological implications
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Fractal frequency scaling of heart period variability is used as a concise index of overall cardiac
control. However, no prior study has assessed within-individual reproducibility of fractal indices
of heart period, or reported how the estimated indices respond to autonomic blockade. Therefore,
we examined fractal properties of the heart period from ten young, healthy individuals during
three separate experimental sessions under control (saline) conditions and twice under combined
autonomic blockade (atenolol and atropine sulfate) conditions. Under each condition, R-R
intervals were recorded with the subject in the supine and the 40 deg upright tilt positions during
20 min of controlled breathing in each position. We calculated the fractal scaling exponent using
detrended fluctuation analysis and estimated confidence intervals of the scaling exponents for
each R-R interval time series within each individual. In the control condition, upright tilt
significantly increased the scaling exponents (from 0.73 ± 0.11 (±s.d., session 1), 0.72 ± 0.10
(session 2) and 0.75 ± 0.13 (session 3) to 0.82 ± 0.12, 0.82 ± 0.11 and 0.84 ± 0.10; Student’s
paired t-test, t = 2.79, P = 0.02; t = 2.80, P = 0.02; and t = 2.07, P = 0.07). However, neither
the absolute scaling exponents nor their change in response to upright tilt were reproducible
(Lin’s concordance coefficient less than 0.9, P > 0.1 for all comparisons). Following autonomic
blockade, the scaling exponents were significantly increased (supine: 1.08 ± 0.13 and 1.08 ± 0.14;
tilt: 1.07 ± 0.21 and 1.08 ± 0.14) for both experimental sessions (two-way repeated-measures
ANOVA; F 17,1 = 40.89, P < 0.001 and F 17,1 = 42.72, P < 0.001) regardless of position. However,
within individuals, the scaling exponents failed to distinguish between control and blockade
for half of the subjects in at least one experimental session. Thus, fractal scaling exponents
are not reproducible within individuals and do not reliably reflect the autonomic mechanisms
responsible for heart period variability. In fact, data from combined blockade suggest that
physiological effects of autonomic outflow may mask intrinsic fractal behaviour of the sinoatrial
node.
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Autonomic mediation of the heart rate is important
for cardiovascular regulation, and therefore has major
implications for cardiovascular pathologies (Tuck, 1986;
Anderson et al. 1989; Kubo et al. 2005; Piepoli & Capucci,
2007). However, the difficulty of obtaining direct measures
to quantify autonomic outflow in humans has led to the
use of various indirect measures based on heart period
variability (Porta et al. 2001; Malliani & Montano, 2002).
These indirect estimates are predicated on the general
assumption that fluctuations in heart period occurring
at different frequencies reflect fluctuations of different
autonomic neural outflows (Task Force, 1996). However,
in addition to autonomic effects, variability in heart

period can also be modulated by other mechanisms, such
as intrinsic variability in sinoatrial pacemaker cells and
ventricular myocytes (Ponard et al. 2007) or fluctuations
in circulating neurohormonal factors (Christophe et al.
1984; Galetta et al. 2008). These may operate at time
scales that time- and frequency-domain based approaches
cannot capture adequately. As a result, scale-independent
measures have been proposed as unique identifiers of the
‘balance’ in the interplay of the numerous mechanisms
that modulate variability in heart period.

The use of scale-independent measures is based on the
fact that an important hallmark of certain complex, highly
non-linear systems is the lack of a characteristic time
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scale of operation. Instead, the output of healthy systems
can demonstrate a type of complex variability associated
with distinct classes of non-linear interactions that
have long-range correlations. Therefore, quantification
of long-range correlations in heart period fluctuations
(the ‘output’) may provide valuable insights into the
overall, integrated control of the heart. Indeed, more
than 25 years ago, Kobayashi & Musha (1982) observed
long term fluctuations in heart period that had a power
spectral density inversely proportional to frequency (i.e.
∼1/f ). Subsequently, it was proposed that, in contrast
to traditional time- and frequency-domain analyses,
non-linear analyses based on this ‘fractal frequency
scaling’ can describe the integrated control of heart
period variability independent of the time scale studied
(Goldberger, 1991; Yamamoto & Hughson, 1991, 1994;
Yamamoto et al. 1995b; Lahiri et al. 2008). Since then,
a wealth of research has been conducted using the
‘fractal’ properties of heart period variability to probe
cardiac control (Yamamoto et al. 1991; Butler et al.
1994; Yamamoto & Hughson, 1994; Tulppo et al. 2001;
Lucy et al. 2003; Merati et al. 2006; Aoyagi et al. 2007).
Furthermore, it has been suggested that the absence of
a characteristic time scale for operation facilitates the
functional adaptive capacity of the cardiovascular system
by helping to prevent ‘excessive mode locking’ (Peng et al.
1993). Thus, it has been reasoned, a breakdown in the
fractal frequency scaling of heart period variability is
diagnostic of disturbances in the overall control of the
heart (Lombardi, 2000; Lombardi et al. 2000).

Although fractal measures have prognostic significance
in cardiac patients (Huikuri et al. 2000; Stein et al.
2008), they should also be shown to be reproducible
across measurement periods within individuals, and
consistent and accurate in reflecting disturbances in
cardiac control. Surprisingly, no prior study has assessed
the within-individual reproducibility of fractal indices of
heart period in humans or reported how the estimated
fractal indices respond to combined sympathetic and
parasympathetic blockade – a profound cardiac auto-
nomic disturbance. Therefore, the present study examined
(i) whether fractal properties of the heart period
measured over 20 min are reproducible within individuals
across different experimental session, and (ii) whether
the physiological effects of combined sympathetic and
parasympathetic blockade are reliably reflected by fractal
indices of heart period.

Methods

Subject characteristics and data collection

Subject characteristics, measurements and study protocol
were reported in detail by Taylor et al. (1998). This
protocol was approved by the human research committees

of the Hunter Holmes McGuire Department of Veterans
Affairs Medical Center and the Medical College of Virginia
at Virginia Commonwealth University, and conformed
with the Declaration of Helsinki. All volunteers gave
their written informed consent to participate. Briefly,
data were collected from ten healthy subjects (7 men
and 3 women, 23–28 years of age) during three separate
sessions. Volunteers were non-smokers without histories
of cardiovascular or other major diseases, and were not
taking any cardioactive medications. Prior to the studies,
they were acclimated to laboratory settings, and practiced
in controlled breathing. They refrained from alcohol
or caffeine intake and strenuous physical activity for
12 h preceding the study sessions. Data were acquired
during control conditions (saline administration) for all
three sessions, and during combined intravenous auto-
nomic blockade (cardioselective β-adrenergic blockade
with 0.2 mg kg−1 atenolol and muscarinic cholinergic
blockade with 0.04 mg kg−1 atropine sulfate) for two of
these sessions. Drugs were administered in random order.

In each session and for both positions and both
conditions, time series of R-R intervals were obtained
via ECG lead II with the subject in the supine and
passive 40 degrees upright tilt positions during 20 min
(in each position) of frequency (0.25 Hz) and tidal
volume-controlled breathing. The electrocardiogram was
recorded continuously on FM tape for subsequent
analog-to-digital conversion, and digitized at a rate of
500 Hz with commercial hardware and software (CODAS,
Dataq Instruments, Akron, OH, USA), consistent with
the guidelines of the Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology (1996). Thus, data used for the current
study comprised ten R-R interval time series for each sub-
ject, representing two conditions (control and combined
autonomic blockade) with subjects in two positions
(supine and upright tilt) obtained three times for control
and twice for combined blockade in separate sessions. All
studies were performed in the morning, 2 h postprandial,
and separated by 1 week. Session order and position order
after drug administration were randomized, and subjects
were not told which drugs they would be given. The
carefully controlled nature of the data collection, as well
as the data length and acquisition (see Appendix) make
these time series uniquely suitable for the current study.

Calculation of the fractal scaling exponents
and confidence intervals

For each subject, the fractal scaling component was
estimated separately for each R-R interval time series
via detrended fluctuation analysis (DFA). DFA is widely
used in analysis of heart rate variability and has been
shown to identify correctly long-range correlations in
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time series (Peng et al. 1995). We also used approximate
entropy (Pincus, 1991; Ho et al. 1997) and sample entropy
(Richman & Moorman, 2000; Aboy et al. 2007) to quantify
the complexity of heart rate variability; however, results
from these indices were qualitatively similar to DFA results.
Therefore, we only report the results from DFA. DFA was
initially proposed by Peng et al. (1993), and described in
detail by Little et al. (2006). A brief description is provided
in the Appendix.

Characterizing a component of a complex system
with an index of fractal behaviour is predicated on the
implicit reductionist assumption that the behaviour and
dynamics observed represent behaviour of the overall
system (Goldberger, 1991). Though this provides a simple
context for interpreting these indices, this assumption
does not obviate the statistical error in the estimated
fractal index. Prior studies have ignored the magnitude
of error in fractal estimates for R-R interval time series;
however, we chose to account for this because it markedly
impacts the ability to interpret any differences in the index
across sessions and conditions. Therefore, we estimated
confidence intervals for the scaling exponents for each
R-R interval time series for each individual. We describe
the derivation of the confidence intervals in the Appendix.

Adequacy and consistency of the data

Although it is feasible to derive a fractal scaling exponent
for any time series, there are two major prerequisites
for obtaining meaningful estimates. First, the implicit
assumption of fractal analyses is that the data actually
conform to a standard fractal time series model (Davies &
Harte, 1987). In fact, it has been argued that ‘completely
meaningless fractal estimates’ can result if this step of
signal classification is not taken prior to fractal analysis
(Eke et al. 2002). Though power-law (1/f ) scaling of
the logarithm of time scales and the logarithm of
corresponding fluctuations is generally assumed to imply
‘fractality’, this assumption is not always valid when the
sampling rate and interval are finite (Avnir et al. 1998).
Therefore, we used a conservative test to assess whether
R-R interval time series conform to the standard fractal
model. The classical model of a fractal time series is based
on the dichotomous ‘fractional Brownian motion’ (fBm)
and ‘fractal Gaussian noise’ (fGn) process (Mandelbrot &
Van Ness, 1968), and this dichotomy has been exploited to
develop different analytical tools to derive fractal scaling
exponents based on the signal class (Eke et al. 2000, 2002).

However, fBm and fGn processes are two sides of the
same coin: the fBm signal is non-stationary with stationary
successive increments, which yield fGn signal, and the
cumulative sum of an fGn signal is an fBm process (Davies
& Harte, 1987; Eke et al. 2002). Therefore, if a time series
conforms to either of the signal classes, then either the time

series itself (for fGn process) or its successive differences
(for fBm process) should be stationary. (Although this
alone is not a sufficient condition, it is a necessary
condition for the standard fractal model.) To test this,
we applied the Priestly–Subba Rao test of stationarity
(Priestley & Subba Rao, 1969) to each of the R-R inter-
val time series and their successive differences both in
time and frequency domains. The test is described in
detail by Priestley & Subba Rao (1969), and the default
implementation details employed in the current study
are described by Constantine & Percival (2007). We were
surprised to find that only 11% of the R-R interval time
series (or their successive differences) conformed to the
standard model (that is, the time series was neither an fBm
nor fGn process, P < 0.05). Therefore, a non-parametric
Wilcoxon rank-sum test was used to test possible effects of
position (supine or tilt) or experiment day on the outcome
of the Priestley–Subba Rao test.

The second assumption of fractal analyses is that
the length of the data be adequate to allow reliable
calculation of a single fractal scaling exponent. Teich
et al. (2001) and Delignieres et al. (2006) suggested that
10–20 min is adequate in most cases to obtain a fractal
exponent. Our data length satisfies the second prerequisite.
Indeed, the analysis provided in the Appendix shows
that increasing our data length to ∼1.5 h would result
in a negligible improvement in the accuracy of estimated
scaling exponent.

Statistics

To validate a proposed measure, one must first establish
its reproducibility from session to session. Therefore,
scaling exponents estimated from data acquired under the
control supine and upright tilt conditions were compared
between the first, second and third experimental sessions
using Student’s t-test for paired data. In addition, the
changes in scaling exponents when subjects moved from
the supine to upright tilt positions were calculated and
compared with the paired t-test. To assess agreement
between estimates on separate sessions, Lin’s concordance
coefficient (Lin, 1989, 1992) was used to test the null
hypothesis (H 0) that the estimated scaling exponents are
not in agreement (ρc < 0.9). Lin’s concordance coefficient
is based on Pearson’s correlation coefficient (a measure of
variation), but includes a bias correction term that takes
systematic deviations into account. Furthermore, it is a
stronger statistical test compared with least-squares linear
regression, since it takes both the intercept and the slope
into account simultaneously.

As mentioned, data used for the current study
comprised R-R interval time series collected under
conditions that broadly represent strikingly different
cardiac autonomic states: intact vagal and sympathetic
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effects that vary with subject position and no auto-
nomic effect regardless of position. To assess whether
scaling exponents reliably reflect autonomic control of
R-R intervals, we tested the difference in scaling exponents
via two-way repeated measures analysis of variance
using position (supine vs. tilt), and condition (control
vs. combined blockade) as factors. However, to be a
reliable diagnostic marker of autonomic control, scaling
exponents should discriminate between different auto-
nomic states, not only at the group level, but also at
the individual level. Therefore, we also tested whether
the distribution of scaling exponents estimated for each
individual during different conditions could reliably be
distinguished. To that end, we used the distribution of
scaling exponents for each time series (calculated as
described in the Appendix for construction of confidence
intervals) to test the null hypothesis that different fractal
exponents calculated during different autonomic states
are statistically distinguishable. (That is, the difference
between two exponents is greater than zero (one-tailed) at
a significance level P = 0.05.) This threshold for statistical
significance is based on the conventional use of the
same level in standard parametric statistical tests (e.g.
one-way ANOVA). In fact, as reported below, in cases
where the fractal scaling exponents were not statistically
distinguishable, the probability was usually much larger
than the adopted criterion of P > 0.05.

Figure 1. Example R-R interval time series from one subject in the supine position (left panels) and
during upright tilt (right panels), at baseline (saline; upper panels) and after combined vagal and
sympathetic blockade (lower panels)

Results

Representative R-R interval time series are shown in
Fig. 1. A strong linear relation between the logarithm of
the time scales (log10n) and the logarithm of fluctuations
(log10P(n)) that extended across more than one time
scale was observed for all R-R interval time series
(mean coefficient of determination (R2) 0.97 ± 0.02.
Representative DFA curves are shown in Fig. 2). However,
as mentioned above, 89% of the time series did not
conform to the standard fractal model. Furthermore,
there was no effect of position or experiment day on this
outcome (Wilcoxon’s rank-sum test, P > 0.05). However,
there was a modest effect of combined blockade. Of
the R-R interval time series that did conform to the
standard model and therefore met the criteria to be a
fractal time series, the majority were observed during
combined autonomic blockade (Wilcoxon’s rank-sum
test, V = 31.5, P = 0.04). In fact, ∼80% of the time
series (9 out of 11) that were fractal derived from
the combined autonomic blockade state. The lack of
conformity could not be completely attributed to the
frequency component induced by controlled breathing
because even after this component was removed (see
online Supplemental Material), 68% of the R-R interval
time series still did not conform to the standard model.

In the supine control condition, the fractal
scaling exponent averaged 0.73 ± 0.11, 0.72 ± 0.10 and
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0.75 ± 0.13 (mean ± S.D.) for three experimental sessions.
Upright tilt increased the fractal scaling exponents to
0.82 ± 0.12, 0.82 ± 0.11 and 0.84 ± 0.10, and at the group
level, the scaling exponents were significantly different
from supine for the first two sessions (paired t-test,
session 1: t = 2.45, P = 0.04, session 2: t = 2.70, P = 0.03)
while the difference was not significant for the third session
(t = 2.04, P = 0.07). However, the scaling exponents
during both supine and upright tilt positions in the control
condition were not reproducible across sessions (Table 1
and Figs 3 and 4). Furthermore, though the average
increase in the fractal scaling exponent was similar for all
three sessions (0.09 ± 0.11, 0.10 ± 0.12, and 0.09 ± 0.14),
the changes were even less reproducible than the absolute
exponents (Table 1 and Fig. 4). Thus, from day to day, the
estimated fractal behaviour in the R-R interval time series
was not consistent, and did not demonstrate reproducible
responses to modest changes in autonomic state.

Following combined autonomic blockade, scaling
exponents were increased to 1.08 ± 0.13 and 1.08 ± 0.14 in
the supine position, and to 1.07 ± 0.21 and 1.08 ± 0.14 in

Figure 2. Representative DFA curves from the same subject shown in Fig. 1 at supine position (left
panels) and during upright tilt (right panels), at baseline (saline; upper panels) and after combined
vagal and sympathetic blockade (lower panels)
Lines in each panel show the linear regression line.

the tilt position. At the group level, combined blockade
had a significant effect on the scaling exponent for
both experimental sessions (F 17,1 = 40.89, P < 0.001 and
F 17,1 = 42.72, P < 0.001) that did not depend on position
(supine vs. tilt). However, despite this average effect,
change in the scaling exponents (expressed as percentage
change from control (saline) condition) was highly
variable across individuals, positions and experimental
sessions (Fig. 5). Furthermore, at the individual level, there
remained a considerable overlap with scaling exponents
during control conditions. During the first experimental
session, fractal scaling exponents from control and
combined autonomic blockade conditions were not
statistically distinguishable in two subjects in the supine
position (subject no. 1: α = 0.83 ± 0.02 (mean ±95% C.I.)
during control and α = 0.96 ± 0.13 after combined
blockade, P = 0.98; and subject no. 10: α = 0.88 ± 0.01
and α = 0.89 ± 0.01, P = 0.89). This was also true for
one subject during the second experimental session (sub-
ject no. 6; 0.78 ± 0.03 during control and 0.83 ± 0.04
after combined blockade, P = 0.73). Additionally during
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Table 1. Comparison between fractal scaling exponents estimated for different experimental sessions

Supine Upright Tilt Change

Session 2 Session 3 Session 2 Session 3 Session 2 Session 3

Session 1 b1 0.45 0.80 −0.50 0.12 −0.10 0.72
b0 0.39 0.16 1.23 0.74 0.11 0.03

ρc (z) 0.53 (0.59) 0.66 (0.80) −0.49 (−0.54) 0.14 (0.14) −0.10 (0.10) 0.57 (0.64)
p 0.79 0.64 >0.99 0.99 >0.99 0.78

Session 2 b1 — 1.32 — 0.46 — 0.51
b0 — −0.21 — 0.46 — 0.05

ρc (z) — 0.87 (1.31) — 0.52 (0.58) — 0.41 (0.43)
p — 0.14 — 0.87 — 0.91

Last column (Change) represents the comparison of the change in scaling exponents in response to upright tilt. b1 and
b0: slope and intercept of the regression line; ρc: Lin’s concordance coefficient; z: z-statistic for concordance coefficient; p:
probability of scaling exponents in two sessions being discordant (ρc < 0.9).

the second session, the fractal scaling exponents during
control and combined blockade were not statistically
distinguishable in two subjects in the upright tilt position
(subject no. 3: 0.88 ± 0.01 and 0.85 ± 0.01; P = 0.52; and
subject no. 4: 0.87 ± 0.01 and 0.97 ± 0.10; P = 0.88). The

Figure 3. Change in scaling exponents from supine to upright tilt position in three sessions during saline
administration (upper panels) and in two sessions after combined vagal and sympathetic blockade
(lower panels)

subjects with indistinguishable scaling exponents were
different in each case; overall, fractal scaling exponents
failed to distinguish between saline control and double
blockade for half of the subjects for at least one comparison
(i.e. supine or tilt, during session 1 or 2).
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Discussion

Prior studies have proposed that the fractal properties
of R-R interval time series reflect overall control of
the heart, and therefore might be useful as a clinical
diagnostic tool to probe the health of the system
(Havlin et al. 1999; Goldberger et al. 2002; Naschitz
et al. 2002; Signorini, 2004; Krstacic et al. 2007).
However, in our study, the scaling exponents calculated
for each individual varied substantially across different
experimental sessions. Under baseline (saline control)
conditions, scaling exponents were not concordant across
three experimental sessions, regardless of the sub-
ject position. Furthermore, the changes in the fractal

Figure 4. Reproducibility of scaling exponents
First column: in the supine position during saline administration; second column: in the upright tilt position, during
saline administration; third column: change in fractal scaling exponents response to upright tilt (tilt – supine),
during saline administration. Diagonal lines show x = y (i.e. slope = 1, intersect = 0).

scaling exponents in response to upright tilt were
not reproducible across different experimental sessions.
Day-to-day consistency is crucial for a reliable diagnostic
measure. However, the reproducibility of fractal exponents
has not been studied previously. This may be due, in
part, to the common practice of averaging estimated
fractal indices of R-R interval time series across several
individuals. Our averages would suggest day-to-day
consistency across subjects, but examination of individual
values shows that a very high scaling exponent measured
on one day can be markedly lower on another day.

Changes in the fractal scaling exponent have been
thought to indicate alterations in integrated cardiac
control. However, this usage is based on group-level
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considerations. Indeed, our data confirm that the fractal
scaling exponents reflect the physiological effects of
complete sympathetic and vagal blockade, but only at
the group level; the exponents calculated after autonomic
blockade were not statistically distinguishable from those
calculated at baseline for half of the individuals half of the
time. Thus, for one-quarter of comparisons, fractal scaling
exponents failed to reflect a profound change in autonomic
state. It is possible that fractal exponents are surrogates
for individual physiological differences; however, under-
standing this would require detailed information on
a large number of study subjects, and an analysis to
disentangle various relations between individual subject
characteristics and fractal indices of heart rate variability.
Nonetheless, fractal scaling exponents of heart period do
not consistently reflect overall autonomic control of the
heart in healthy subjects, and do not reliably indicate the
physiological state of the heart, and so should not be
considered as reliable diagnostic measures of autonomic
state at the individual level.

This may not be surprising if one explores prior
reports of fractal indices and cardiac autonomic state. For
example, one study (Perkiomaki et al. 2002) suggested
that fractal indices do not correlate well with any other
index of autonomic control (highest R2 less than 0.50), and
that changes in fractal scaling and changes in heart rate
after complete cholinergic blockade do not correlate with
each other. Furthermore, Yamamoto & Hughson (1994)
reported that scaling behaviour following β-adrenergic
blockade does not change, Tulppo et al. (2001) suggested
that the scaling exponent following noradrenaline infusion
decreases, Yamamoto et al. (1995a) and Perkiomaki et al.
(2002) found that the scaling exponent following vagal
blockade increases, and Mourot et al. (2007) demonstrated
that the fractal scaling exponent is unrelated to an increase

Figure 5. Percentage change in individual scaling exponents in response to combined sympathetic and
vagal blockade in the supine position and during upright tilt on experimental sessions 1 and 2

or decrease in muscle sympathetic nerve activity during
autonomic manoeuvres. Thus, the literature does not
support a simple relation between fractal scaling and
cardiac autonomic effect. Indeed, prior reports and our
own results reinforce the conclusion that, although the
underlying physiology of the cardiovascular system may
be complex, scaling exponents fail to capture significant
aspects of this physiology. As a matter of fact, the fractal
scaling exponent calculated using DFA is mathematically
related to traditional spectral indices of heart period
variability (Francis et al. 2002; Willson et al. 2002), which
can be unreliable (Sandercock et al. 2005). Francis et al.
(2002) observed that the frequency-domain equivalent
of DFA is a weighed ratio of spectral powers. This is
important to note because even a small change in the
numerator or denominator can result in a substantial
change in an observed ratio; thus, small day-to-day
changes in spectral powers may lead to large day-to-day
variability in fractal scaling exponents. As a result, the lack
of a relation between fractal scaling exponents and other
indices of cardiac autonomic control is not unexpected.

The above considerations contradict the use of fractal
indices to probe the ‘health’ of cardiac control. The use of
fractal scaling exponents as a diagnostic measure is pre-
dicated on the assumption that there is a fractal scaling
exponent associated with a ‘healthy’ system, and that this
exponent deviates from this value with dysfunction (Task
Force, 1996; Goldberger et al. 2002; Ribeiro et al. 2002;
Signorini, 2004; Beckers et al. 2006a,b; Merati et al. 2006;
Vigo et al. 2007). It is surprising that there is no consensus
in the literature on what a ‘healthy’ fractal scaling exponent
should be. Mourot et al. (2007) reported a scaling exponent
of 0.71 ± 0.13 for healthy subjects during supine rest
whereas Struzik et al. (2004) reported a value of 1.18
for healthy subjects using first-order DFA. Fractal scaling
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exponents have been reported as 0.5 for individuals with
heart failure and as 1.0 for healthy individuals (Goldberger
et al. 2002). In our study, the fractal scaling exponents
calculated for healthy young individuals under baseline
conditions showed a great variability, ranging from ∼0.44
to ∼0.91. This is similar to results published by Heffernan
et al. (2008). In their study, even though all subjects
were ‘apparently healthy without any history of chronic
disease’, scaling coefficients at baseline ranged from ∼0.52
to ∼1.36. These values are similar to those reported for
older individuals and individuals with congestive heart
failure (Goldberger et al. 2002). As a matter of fact,
in our study, fractal scaling exponents calculated after
complete blockade of autonomic outflow were closer to
the presumed ‘healthy’ scaling exponent of 1.0 than those
calculated at baseline.

Thus, our results do not support a relation between
fractal indices of heart rate variability and the ‘health’
of cardiac autonomic control. This conclusion is in
contrast to the finding that as a predictor of mortality
following myocardial infarction in a large number of
subjects (n = 446), short-term fractal scaling exponent
provides 7–12% more predictive power than other
traditional measures of heart rate variability (Huikuri
et al. 2000). However, in contrast to young healthy
individuals, abnormal breathing patterns (e.g. obstructive
sleep apnoea; Schafer et al. 1999) or differences in physical
activity (physical activity is a major contributor to the
ultra low frequency components of heart rate variability;
Serrador et al. 1999) in myocardial infarction patients may
be reflected in fractal scaling components estimated from
24 h recordings. Moreover, long time intervals used for
these analyses may preclude physiological interpretation
of the fractal scaling exponents (Pilgram & Kaplan,
1999).

The implicit assumption in application of fractal indices
to heart period variability is that the time series conform
to the standard statistical model of fractal behaviour
(Mandelbrot & Van Ness, 1968). Time series that are
consistent with the classical fractional Brownian/Gaussian
motion model of fractal, or self-similar scaling can be
adequately characterized by the standard deviation and
the scaling exponent of the series (Eke et al. 2000). DFA has
been suggested as a relatively robust method to quantify
the fractal properties of a time series when it cannot
be determined whether the time series conforms to the
standard model (Eke et al. 2002). However, if a time series
is not consistent with this fractal model, its statistical and
temporal properties cannot be completely elucidated by a
fractal scaling exponent. Using only a single, conservative
test, we found a small minority of our data sets might
conform to this classical fractal model, despite the strong
linear relation between the logarithm of time scales and
the logarithm of magnitude of corresponding fluctuations.
This result reaffirms the notion that linear power-law

scaling does not necessarily imply that the time series is
fractal (Avnir et al. 1998).

It could be reasoned that flaws in these data did not
allow accurate fractal estimates. Data length is a key issue
in fractal estimates; however, our analysis in the Appendix
shows that the lengths of our time series are sufficient
to allow stable estimates. Along these same lines, it has
been suggested that using two or more scaling exponents,
a multifractal approach (with longer time series) may
better characterize R-R interval time series than a mono-
fractal approach (Ivanov et al. 1999; Iyengar et al. 1996;
Meyer & Stiedl, 2003). However, previous work suggests
that short-range, long-range and monofractal scaling
exponents are not statistically different from each other in
young healthy individuals (Iyengar et al. 1996). Indeed, in
our data set, the DFA curves in all R-R interval time series
were highly linear, suggesting that a multifractal approach
would not change our results. Sampling frequency of R-R
interval is another crucial element for a reliable estimation
of fractal scaling exponents, especially after combined
autonomic blockade when noise could be greater than
the R-R interval variability itself. In addition, controlled
breathing contains a periodic component of 4 s (4–
10 beats, depending on the condition) that could affect
estimated fractal exponents. However, further analysis (in
online Supplemental Material) showed that neither of
these factors had a significant effect on our results.

Interestingly, fractal behaviour in the heart period
became most apparent following combined autonomic
blockade. Roughly 25% of the R-R interval time series
observed during combined autonomic blockade were
fractal, whereas only 3% of those observed in the control
condition had fractal characteristics. This observation
may be related to the work of Ponard et al. (2007) who
showed fractal behaviour in isolated ventricular myo-
cytes. They inferred that similar intrinsic fractal variability
exists in sinoatrial node pacemaker activity and may
derive from stochastic fluctuations in transmembrane
currents and stochastic gating of intracellular calcium
release (Ponard et al. 2007). If our results from combined
blockade reflect this same physiology, it would suggest that
cardiac autonomic control, rather than contributing to
fractal behaviour in heart period, masks intrinsic fractal
behaviour that may derive from cardiac pacemaker cell
activity. In addition, there may be mechanisms other
than autonomic outflow that modify the fractal behaviour
of intrinsic pacemaker activity; there are many neuro-
endocrine effectors that modulate cardiac chronotropy
(Christophe et al. 1984; Polikar et al. 1993; Jedrusiak et al.
1995; Galetta et al. 2008) which might also further mask
intrinsic fractal patterns. This might be the reason that not
all time series from combined autonomic blockade were
fractal.

In summary, our results show that a majority of R-R
interval time series do not conform to the assumed
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standard monofractal model of fractional time series
and are not purely fractal processes. As a consequence,
calculated fractal scaling exponents are not reproducible
within individuals, and do not reliably reflect the auto-
nomic state of the heart. As a matter of fact, cardiac auto-
nomic control may mask fractal behaviour that is intrinsic
to the physiological function of sinoatrial node pacemaker
activity. Thus, our results caution against the use of fractal
indices of heart period variability as either physiological
measurements or diagnostic tools.

Appendix

Calculation of fractal scaling exponents
and confidence intervals

To estimate fractal scaling exponent via detrended
fluctuation analysis (DFA), first the accumulation of
departures in the time series, x(t), from the mean, x̄, was
calculated by integrating the departure for whole time
series from the average value:

X (T) =
T∑

t=1

(x(t) − x̄)

The integrated series was then divided into
non-overlapping segments, and each segment was
locally detrended by subtracting the values obtained by
linear least-squares regression. The size of each segment
(that is, each time scale used in the study) was the same
for each time series, and ranged from 4 to approximately
128–256 (∼10% of the length of the series) beats.
The amount of fluctuation, P, in each integrated and
detrended segment was then calculated by:

P =
√√√√ 1

N

N∑
k=1

(X (k) − X n(k))2

The fractal scaling exponent, α, is estimated as the slope
of a double logarithmic plot of P as a function of n, i.e.
P ∝ n−α.

To estimate the confidence intervals of the calculated
fractal scaling exponent for each time series, we followed
an empirical Monte Carlo approach to take advantage
of the standard model for fractal behaviour. Thus, for
the 11% of R-R interval time series that conformed
with the standard model, we used an artificial fractional
Gaussian noise time series for Monte Carlo simulations.
For each of these time series, the scaling exponents
were calculated and then 2500 artificial time series were
generated with the same scaling exponent (surrogate
series) based on the algorithm proposed by Davies and
Harte (1987) and described in detail by Delginieres
et al. (2006). The scaling exponent for each of the
2500 surrogate time series was then re-calculated. This

procedure resulted in a distribution of scaling exponents
for each original time series. Each distribution was normal
(Kolmogorov–Smirnov test, P > 0.05 in all cases) and so
95% confidence intervals were estimated as 2.5th and
97.5th quantiles of each distribution. For the remaining
89% of R-R interval series that did not conform with
the standard model of fractal time series, we estimated
confidence intervals via a non-parametric approach. We
fitted a long autoregressive model (model order = 50) to
each R-R interval time series to obtain a ‘skeleton’ of the
series and residuals that are approximately independent
and identically distributed. Then, the residuals were
shuffled, added to the skeleton, and the fractal exponent
for the resulting time series was re-estimated. The second
step was repeated 2500 times, and the confidence inter-
vals for each scaling exponent was calculated as described
above for the first method.

Adequacy of data length

Adequacy of data length can be verified by determining the
change in variability of the scaling exponents in repeated
trials with varying data lengths. In practice, however,
measurements of variable durations under identical
conditions and experimental settings are rarely available.
Thus, artificial data sets with the same characteristics
as actual data sets can be used to assess changes in the
estimated scaling exponents. We generated two separate
ensembles of artificial series: one with the same standard
deviation and fractal scaling exponent as the shortest R-R
interval series at baseline (baseline-surrogates), and one
with the same standard deviation and scaling exponent as
the shortest R-R interval series during combined auto-
nomic blockade (blockade-surrogates). Each ensemble
consisted of 1000 randomly generated fGn/fBm series (as
described above for calculation of confidence intervals)
and each ensemble was generated several times with time
series’ length varying from N = 180 beats (∼3 min) to 4
times the length (with 100 beat increments) of the actual
R-R interval time series. We then estimated the fractal
scaling exponent for each artificial series. This resulted in
1000 fractal scaling exponents for each N , for baseline-
and blockade-surrogates, and we assessed the standard
deviation of estimated fractal scaling exponents within
each ensemble.

Increasing the length of artificial R-R interval series
set to ∼90 min reduced the standard deviation of the
estimated exponent only from 0.046 to 0.034 at base-
line, and from 0.011 to 0.008 during complete auto-
nomic blockade (see Fig. S1 in the Supplemental Material).
This reduction in the standard deviation is substantially
smaller than interindividual variation in estimated scaling
exponents. Therefore, observed lack of reproducibility
and reliability of fractal scaling exponents in our data
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sets cannot be attributed to the R-R interval time series
length.
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