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Abstract: This study presents an analysis of a cerebral autoregulation (CA) model developed
by Ursino and Lodi (1997). We have used this model to analyze non-invasive measurements
of cerebral blood flow velocity (CBFV) and arterial blood pressure obtained during postural
change from sitting to standing for a healthy young subject. This paper includes a sensitivity
analysis, ranking model parameters from the most to the least sensitive, and an analysis (using
a methodology called subset selection) that allows identification of correlations among model
parameters. Finally, we estimated patient specific parameters using the Levenberg-Marquardt
optimization method minimizing the least square errors between computed and measured values
of CBFV.
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1. INTRODUCTION

Cerebral autoregulation (CA) is a homeostatic mechanism
characterized by the maintenance of cerebral blood flow
(CBF) in spite of changes in cerebral perfusion pressure. It
has been shown that alterations in CA are associated with
the presence of vascular disease such as hypertension and
stroke (Hu et al., 2008a) as well as cardiovascular risk fac-
tors such as diabetes (Hu et al., 2008b). The examination
of CA alterations with respect to disease, aging, vasoactive
drugs and other factors that effect vascular function is
often difficult due to the inherently complexity of CA
dynamics for which many aspects display pronounced non-
linearities; (Giller and Mueller, 2003). In order to gain
insight into the ways that CA may change in response
to disease, we employed a mathematical model originally
developed by Ursino and Lodi (1997).

This model was developed to characterize the nonlinear
time pattern of intracranial pressure (ICP) dynamics in
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interaction with arterial pressure, cerebrospinal fluid cir-
culation, and autoregulatory action.

We chose this model because we believe that it sufficiently
accounts for the physics of the cerebrovasculature to quan-
tify the variations in CBF, while remaining relatively sim-
ple compared to other models. In spite of this simplicity,
however, the model has more parameters than can be
accurately estimated from noninvasive measurements of
cerebral blood flow velocity (CBFV) and arterial blood
pressure. In the following sections we will discuss the
derivation of this model, a procedure for selecting identifi-
able parameters, and a numerical technique for estimating
model parameters using patient-specific data.

We have used similar techniques for previous studies (Ell-
wein et al., 2009; Pope et al., 2009), however, both of these
studies were developed to study dynamics in closed-circuit
lumped parameter models that only aimed at predicting
beat-to-beat values of cerebral blood flow and pressure,
without any attempt to model the dynamics of CA. The
latter aspect introduces additional nonlinearities into the
model, which makes it more difficult to estimate reliable
model parameters.

2. HEMODYNAMIC MODEL OF CA

The hemodynamic properties of the cerebral vasculature
were approximated with a lumped parameter model. The
model is schematically illustrated in Fig. 1.
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Fig. 1. Schematic of the hemodynamic model of cerebral
blood flow.

Using terminology derived from electrical RC-circuits, flow
(q, ml/sec) is analogous to current, pressure (p, mmHg) is
analogous to voltage, stressed volume (V ml) is analogous
to charge, compliance (C, ml/mmHg) is analogous to
capacitance, and resistance (R, mmHg sec/ml) is the same
in both formulations. Using this analogy, we can describe
the volume compliance of the cerebral arteries by

Va = Ca(pa − pic), (1)

where Va, Ca, and pa are the stressed arterial volume,
compliance, and pressure, respectively, and pic is the in-
tracranial pressure. We assume that the arterial compli-
ance is altered by smooth muscle tension, making this a
time-varying quantity, regulated by CA. Therefore, differ-
entiating (1) with respect to time gives

dVa

dt
= Ca

(

dpa

dt
− dpic

dt

)

+
dCa

dt
(pa − pic).

The regulation of vessel tone is achieved by defining
arterial compliance by

dCa

dt
=

1

τ
[−Ca + σ(G · x)] , (2)

where σ is a sigmoid control function,

σ(Gx) =
(Can + ∆Ca/2) + (Can − ∆Ca/2)eGx/kσ

1 + eGx/kσ

,

with

x =
q − qn

qn
(3)

and
kσ = ∆Ca/4.

The subscript n denotes the basal value of a parameter for
a specific individual. The feedback control σ is designed
to be a saturable function in which ∆Ca is a parameter
describing the limits of CA. Assymetry in the CA capacity
with respect to basal conditions motivates the alteration
in ∆Ca, depending on the sign of x,

∆Ca =

{

∆Ca1, if x > 0
∆Ca2, if x ≤ 0,

and G is the autoregulatory gain.

The cerebral arterial blood flow, q, used in (3), is calcu-
lated in analogy to Ohm’s law by

q =
pa − pc

Ra
, (4)

where Ra is the lumped arterial vessel resistance to flow
given by

Ra =
kRC2

an

V 2
a

.

In this equation, kR is a model parameter, and Can denote
the basal value of the arterial compliance.

For the capillary pressure, pc in (4) it is assumed that
the outflow pressure acting on the cerebral capillaries is
equal to the intracranial pressure pic. Furthermore, it is
assumed that flow leaking from the capillaries is negligible.
Therefore,

pc =
paRpv + picRa

Rpv + Ra
. (5)

Equations (1-5) comprise a system of two ordinary differ-
ential equations (ODE’s) given by (2) and

dpic

dt
=

kE · pic

1 + Ca · kE · pic

[

Ca
dpa

dt
+

dCa

dt
(pa − pic) (6)

+
pc − pic

Rf
− pic − pvs

R0

]

.

Patient-specific simulation of CA dynamics was achieved
by using continuous arterial pressure (pa) as well as the
change in arterial pressure with respect to time (dpa/dt)
as inputs to the model. The state variables of the system
of ODE’s are pic and Ca. However, these are not quantities
that are easily available from measurement. Therefore, the
model output is CBFV (v̂) computed as

v̂(ti) =
q(ti)

Ac
, (7)

where q(ti) is computed from (1-5), and Ac is the cross
sectional area of the middle cerebral artery (MCA).

3. EXPERIMENTAL METHODS

Data analyzed in this study were recorded in Dr. Novak’s
Syncope and Falls in the Elderly (SAFE) laboratory at
Beth Israel Deaconess Medical Center, Boston, MA. Data
obtained from a healthy young subject include continuous
measurements of blood pressure from the index finger,
obtained using the Finometer device (Finapres, Ohmeda
Monitoring Systems, Englewood CO, FMS (2008)), and
CBFV measured by transcranial Doppler (TCD) ultra-
sonography (MultiDop X4, DWL Neuroscan Inc, Sterling,
VA) in both middle cerebral arteries (MCA). For this
analysis, only one of the TCD recordings was used. Ar-
terial pressure and CBFV were recorded during a postural
change from sitting to standing at 500 Hz and stored on a
custom Labview system. We assumed that cerebral blood
flow (CBF) is proportional to CBFV by a factor represent-
ing a constant cross sectional area of the insonated artery.

3.1 Experimental Procedure

After instrumentation, the subject is asked to sit quietly
with the legs elevated at 90◦ for several minutes until
pressure and heart rate were stable. The patient was then
instructed to stand while recording of pressure and CBFV
continued. Measurements during standing were continued
until a new steady state was obtained, judged by a trained
technician. One hundred seconds of data were used for the
analysis presented in this study.



3.2 Pre-Processing

The raw data were too noisy to directly be used as
an input to the mathematical model. Recall that both
the measured arterial pressure (pa) and the numerically
calculated pressure gradient (dpa/dt), which is sensitive to
measurement noise, are required as inputs. Furthermore,
the model developed by Ursino and Lodi (1997) was
not intended to quantify the pulsitile hemodynamics of
the cerebral vasculature, but only the mean physiological
responses. Thus we smoothed both pressure and CBFV
using filtering. Filtering was achived by assuming that,
given a continuous data signal, x(t), the mean signal could
be represented by

x(t) = α

∫ t

−∞

x(t)e−α(t−s)ds, (8)

where α is a relaxation time. While we do not have data
from before 0 seconds, we assume that the effect of the
data at t < 0 is negligibly small. Therefore, differentiating
(8) with respect to time, we can express the smoothing
function as the ordinary differential equation

dx

dt
= α

[

−x(ti) + xd
i

]

with x(0) (the initial condition) set equal to the overall
mean of the data where the patient is resting in sitting
position. In the above expression, long relaxation times
(α ≪ 1) give rise to a phase-shift of the data, while very
large values of α (short relaxation) lead to integration
errors. For this analysis we used α = 2 seconds.

Data were sampled at 500 Hz. Using this high resolution
of data for calculations gave rise to very long computation
times, thus, we down sampled the results to 50 Hz. We
found that there were no appreciable errors due to down-
sampling, though when estimating standard errors (not
done for this study) of the parameters, we we anticipate
that it may be beneficial to use a higher sampling rate.
Fig. 2 shows the down-sampled and filtered data (x)
together with the original signals.
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Fig. 2. Smoothed pressure (top) and flow velocity (bottom)
data (blue) compared with the raw data (green)

3.3 Nominal Parameter Values

A set of nominal parameter values θp and initial conditions
θi for the differential equations (1-6) can be derived using
insight from the physiology combined with knowledge of
the subject studied.

The orginal manuscript by Ursino and Lodi (1997) dis-
cusses aspects of this procedure, however, their model
lists no method for calculating the parameter values for
a specific individual. Furthermore, we have introduced an
additional parameter Ac. We use a priori values (from the
original study by Ursino and Lodi (1997)) for parameters
pan, pcn, picn, qn, pvs, Van, qfn, G, and τ , but predict
pan and qn using average values from data recorded at
baseline (during sitting), where we assume that the system
is in steady-state. The remaining parameter values were
calculated from functional relations implicitly derived us-
ing the assumption that the system is in steady state. All
parameter values are given in Table 1.

Table 1. Parameters of the hemodynamic model of
CA. Superscript * indicates that the value of the
parameter was determined by the suggested value
in Ursino and Lodi (1997). Subscript n indicates that

the parameter represents a basal value.

Parameter Description Initial Value

pcn (mmHg) Capillary pressure 25*
picn (mmHg) ICP 9.5*
qn (ml/s) Art. l flow estimated
pvs (mmHg) Venous pressure 6*
Van (ml) Art. volume 13.5*
qfn (ml/s) CSF formation 2/300*
kE (ml−1) Cranial elastance .11*
τ (s) CA relaxation 20*
G (unitless) CA gain 1.5*
pan(mmHg) Art. pressure estimated
R0 (mmHg · s/ml) CSF outflow resist. (picn − pvsn)/qfn

Rf (mmHg · s/ml) CSF inflow resist. (pcn − picn)/qfn

Can (ml/mmHg) Art. compliance Van/(pan − picn)
Ca,mx (ml/mmHg) Max Ca 6 Can

Ca,mn (ml/mmHg) Min Ca .5Can

∆Ca1 (ml/mmHg) σ amplitude 1 2(Ca,mx − Can)
∆Ca2 (ml/mmHg) σ amplitude 2 2(Can − Ca,mn)
Ran (mmHg · s/ml) Art. resist. (pan − pcn)/qn

Rpv (mmHg · s/ml) Pial vein resist. Ran
picn−pcn

pcn−pan

kR (mmHg3
· s/ml) Resist. coeff. V 2

an
pan−pcn

C2
anqn

Ac (cm2) Area of MCA estimated
Ca0 (ml/mmHg) Initial Ca Can

Pic0 (mmHg) Initial ICP picn

We note that pcn, Van, qfn, Ca,mx, Ca,mn, and pan

are only used in the calculation of initial parameter
values and are not themselves model parameters. Can

is used in calculation of initial parameter values and
is used as the approximation of the initial condition
Ca0. Therefore, parameter estimation did not include
these quantities. An additional parameter Ac is also
fixed for identifiability purposes discussed in the next
section. Thus model parameters analyzed include θ =
{picn, qn, pvs, kE , τ, G, R0, Rf , Can, ∆Ca1, ∆Ca2, Ran, Rpv,
kR, Ca0, pic0}.

4. ESTIMATION OF MODEL PARAMETERS

The model described in Section 1 has thirteen parameters
(excluding pcn, Van, qfn, Ca,mx, Ca,mn, pan, and Ac), θp



and two initial conditions θi, giving a total of fifteen can-
didate parameters. Several of these have clinical interest.
In particular, with respect to disease and aging, we are
interested in distinguishing between those alterations in
the cerebrovascular response to arterial pressure changes
that can be attributed to CA mechanisms, characterized
by τ and G, and those that can be attributed to hemody-
namic characteristics, such as those that are summarized
by R0, kE , and qn. However, since several parameters are
correlated, reliable prediction of these parameters will not
be feasible without first reducing the parameter space. For
instance, Ac is correlated with kR due to the functional
relation given by (4) in which

v̂ =
q

Ac
=

V 2
a (pa − pc)

AckRC2
an

. (9)

Therefore, Ac was held fixed in this analysis. The reduced
parameter vector θp and θi can then be estimated together

as θ = [θ̂T
p , θT

i ]T .

To estimate model parameters we used a nonlinear least-
squares technique minimizing the least squares error be-
tween computed and measured values of cerebral blood
flow velocity. To this end we define the residual r and the
least squares cost J as

r(ti; θ̂) =
v̂(ti; θ̂) − vi

vi

√
N

and (10)

J(θ̂) = rT r,

where N is the total number of data points, v̂(ti; θ) are the
(θ-dependent) model estimates of the CBFV at time ti and
vi are the corresponding TCD estimates of CBFV. Before
applying nonlinear least squares optimization to estimate
model parameters, we use sensitivity analysis and subset
selection to determine the set of parameters that we can
reasonably estimate given numerical constraints.

4.1 Sensitivity Analysis

The goal of this analysis is to find a parameter set θ̂∗ that
minimizes the least-squares cost defined by (10). However,
applying the optimization procedure using all parameters
can be comuptationally cumbersome if not naive. We
conducted sensitivity analysis in order to determine if the
model is insensitive to some parameters, allowing us to
exclude them from the optimization procedure.

In order to determine which of the parameters the model
was insensitive to, we computed normed relative sensitiv-
ities. The jth sensitivity function (j = 1 . . . n, where n is
the total number of model parameters) is given by

Sj(ti) =
∂y

∂θj
(11)

where y(t) is the model output (CBFV) and θj is the
jth parameter. Many applications, (e.g. our previous
study (Ellwein et al., 2009)) include several outputs of
different order, thus it is often necessary to make sensi-
tivities relative to compare sensitivities across outputs. In
our application, we only have one output quantity CBFV,
thus this is not a requirement. However, for comparison
with previous studies, we predict the parameter ranking
using relative sensitivities. Relative sensitivity functions

(non dimensional) can be obtained by scaling sensitivities
relative to the model parameter and the output as

Sj(ti)
R =

∂y

∂θj

θj

y
. (12)

We used a forward difference approximation to compute
the jth partial derivative of the model output by

∂y

∂θj
≈ y(ti; θ + hej) − y(ti; θ)

h
(13)

where ej is the unit vector in the direction of the jth

parameter. We used h = 10−2. We then computed the
norm of (12) by

Sj,(norm) =

(

1

N

N
∑

i=1

Sj(ti)
R2

)1/2

. (14)

In order to obtain an over-all scaling of the sensitivity of
the model output to each of the parameters. The results
can be seen in Fig. 3.

Fig. 3. Log10-scaled relative sensitivities of the model
parameters (of θp).

For this analysis, no parameters had a sufficiently small
Sj,(norm) to warrent exclusion, however, since initial pa-
rameter values are, in part, computed from patient-specific
values, this may not be the case for all individuals. Conse-
quently, for this subject subset selection was performed on
all 15 model parameters to determine which of them were
numerically estimable.

4.2 Subset Selection

We can see from equations (1-6) that some of the parame-
ters are not linearly independent with respect to the model
output, e.g. we showed in (9) that Ac is correlated with
kR. Other correlations may exist but are not so obvious.
To tease out these correlations we use a subset selection
method originally proposed by Golub and Loan (1983) and
used in some of our previous studies (Ellwein et al., 2009;
Pope et al., 2009).

This method predicts correlations by analyzing the numer-
ical rank of the Jacobian, which can be computed from the
residual vector (10) as r′ = ∂r/∂θ. The numerical rank is
assessed using singular value decomposition

r′ = UΣV T ,

where Σ is the diagonal matrix of singular values of r′ in
decreasing order, V is the matrix of right singular vectors,



and the superscript T denotes the matrix transpose. We
form a partition V = [Vρ, Vn−ρ] in which ρ is the numerical
rank of r′. Using ρ we find a permutation matrix P such
that

V T
ρ P = QR̂,

where Q is full rank and the first ρ columns of R̂ form
an upper triangular matrix with diagonal elements in
decreasing order. P is then used to reorder θ according

to θ̂ = PT θ. We find that θ̂ = [θ̂ρ, θ̂n−ρ], in which θ̂ρ is a
vector containing the ρ estimable parameters.

Using this procedure, we determined a set of identifiable

parameters (θ̂), listed in Table 2. It should further be noted
that all of these parameters are sensitive (see Fig. 3). The

remaining parameters θ̂n−ρ are held fixed at their nominal
parameter values.

5. NUMERICAL OPTIMIZATION

The parameter vector θ̂ρ was estimated from data using
the Levenberg-Marquardt (L-M) method (Kelley, 1999).
L-M is an iterative method that uses the gradient of
the cost with respect to the parameters to determine an
appropriate alteration in the parameter values.

5.1 Verification of Convergence

We verified the convergence of the L-M method by
analysing the cost J , defined in (10) and the gradient norm
for each iteration. The results can be seen in Fig. 4. For
each iteration, we expect that both the gradient norm and
the cost will decrease. Results of our computations (see
Fig. 4) showed that both the gradient norm and the cost
are dramatically reduced, with only modest reductions
over the last few iterations. From these observations we
concluded that the algorithm has reached a local minimum

and considered the final value of θ̂ρ to be the optimal value.
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Fig. 4. Gradient norm and least squares cost at each
iteration
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Fig. 5. Comparison of the model, computed with starting
(–) and optimized (-) values of parameters, with data.

6. RESULTS AND DISCUSSION

In this study, we analyzed the model developed by Ursino
and Lodi (1997) using sensitivity analysis and subset selec-
tion to identify a set of parameters that can be estimated
using noninvasive measurements of arterial blood pressure
and cerebral blood flow velocity. We found that out of
fifteen model parameters eight could be estimated reliably
using the data. We estimated this subset of parameters by
means of the L-M method.

The final, optimized values of the parameters, and their
starting values, are listed in Table 2. We found that all
parameters are within a physiologically relevant range and
the cost is reduced by over one order of magnitude.

Table 2. Comparison of nominal and optimized pa-
rameters. The initial cost was 0.52439, which was re-
duced to 0.00941 over 13 iterations of the G-N routine.

Parameter Starting Value Optimal Value

pic0 9.500 6.712
qn 6.968 5.741
tau 20.00 14.16
Rpv 2.224 5.307
∆Ca1 1.791 2.021
∆Ca2 0.1791 0.2352
Can 0.1791 0.2300
Ca0 0.1791 0.2706

We can qualitatively compare the optimized parameters
with the starting values of parameters by examining Fig. 5.
We see that the optimal parameters do a better job of
matching the cerebrovascular response than the starting
parameters.

These results depend on the relaxation factor α that was
chosen to smooth the data. We found that larger values of
α provided a greater numerical rank of the Jacobian matrix
described in Section 4.2, resulting in a greater number
of identifiable parameters predicted by subset selection.
We must also consider that both sensitivity analysis and
subset selection are local methods, that predict results
depending on initial parameter values. Since the model



is nonlinear, the results (i.e., the sensitivity rankings, the
final subset chosen, and their respective optimal values)
may not be the same if a different set of initial values are
chosen. We used initial parameter values defined by Ursino
and Lodi (1997), but did not conduct a further analysis
investigating the behavior of this model away from these
values. One way to investigate the is to recompute sen-
sitivities and apply subset selection using the optimized
parameter values.

7. CONCLUSIONS

We found that the model proposed by Ursino and Lodi
(1997) is able to predict CA dynamics observed during
postural change from sitting to standing for a single
subject using measured arterial pressure and MCA flow
velocity. The results of this study show that it is feasible to
use this model to analyze dynamics of individual subjects
and may be suitable to study variations in CA between
populations. Ultimately, this technique can be used to
determine how these parameters vary with respect to
disease and aging while taking into account the highly
nonlinear nature of blood pressure-cerebral blood flow
variations. Thus, future work should consist of estimating
standard errors of paramter estimates and formulation of
a hypothesis testing procedure to determine if differences
in the fitted parameters exist between groups while taking
into account intra-subect parameter uncertainty.
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