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Outline

* Concept of fractal

* Fractals in physiology (heart rate and motor
activity fluctuations)

* Relevance of the circadian system to fractal
physiological controls

— Circadian rhythms of heart rate fractal properties in
humans and rats

— Effects of lesioning the master clock of the circadian
system

— Conceptual neurobiological model of fractal controls
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Fractals in Physiology

Self-similar/fractal structure Fractal cardiac dynamics Fractal activity dynamics

300 min 16 h
150

ol
= 1UD
3
5D-
k ' 30 min
15097

Hearl Rate (bpm)

I~
H\\u\\\\
o~
=

-
= =) _
£ S
j gmn- _?:"- 2 }
\\ Y E -; J ﬂ‘ |
£ 2 0 —
EC‘; 50-% f
| '\ h“-_ E
A N ;,1 :
A} 3 min 1h
180} y
‘\._\ —_
Il "\-‘ - ::.— 4
A o ] 2
e 2 oo
2" 1
= ]
kel )
T | 0
D-

Fractal may be a property of dynamics as well as structure.
Fractal fluctuations were observed in a wide range of
physiological outputs.



Fractals in heart rate fluctuations

Self-similar cascades
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P.Ch. Ivanov et al. Nature 383:323 (1996).
P.Ch. Ivanov et al. Physica A 249: 587 (1998).
P.Ch. Ivanov et al. Chaos 11: 641 (2001).
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Fractal Complexity Degrades with Disease

Healthy Dynamics: Multiscale Fractal Variability
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/ Two Patterns of
Pathologic Breakdown

Single Scale Periodicity Uncorrelated Randomness

* Change or break down
under pathologic
conditions

Ivanov PCh.et al., Nature 1999; 399:461; Phys Rev Lett 2002; 89 : 068102.
Goldberger AL et al., Proc Natl Acad Sci U S A 2002; 99, 2466-2472.



Homeostasis Revisited

PHYSIOLOGICAL REVIEWS

Vol. IX JULY, 1929 No. 3
ORGANIZATION FOR PHYSIOLOGICAL HOMEOSTASIS

WALTER B. CANNON

Body as servo-mechanism type machine
* Importance of corrective mechanisms to keep variables “in bounds.”

) ¢

* Underlying notion of “constant,
conditions.
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single steady-state,” equilibrium-like”
/ Perturbation
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Homeostasis Revisited

...OR

* Is complex spatio-temporal variability a mechanism of
healthy stability?

* And, therefore, do we need fundamentally to rethink all
notions of mechanisms and causality in physiology

Healthy Dynamics: An Equilibrium State?

Another fallacy. But there is an equilibrium state...
...death



Fractals and Power Laws
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Method for quantification of fractals

*Box counting (fractal dimension)
*Power spectral analysis

*Hurst analysis

*Root mean fluctuation analysis

@ fluctuation analysis (DFA)

*Detrended moving average analysis

*Wavelet-based multifractal analysis

Hu K, et al., Phys. Rev. E 64, 011114 (2001)
Chen Z, et al., Phys. Rev. E 65, 041107 (2002)
Chen Z, et al., Phys. Rev. E 71, 011104 (2005)
Xu L, et al., Phys Rev E 71:851101 (2005)



Method for quantification of fractals:
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Peng CK, et al., Phys. Rev. E 49,1685-89, 1994.

Detrended fluctuation analysis (DFA)

Quantification of fluctuations at
different window size
* Remove mean
* Integrate
* Detrend using polynomial
functions in all windows
* Obtain average fluctuations

Log-log plot (power-law form indicates
scale invariance)

Scaling exponent reveals correlation
property:

a=1.0 : the most complex fractal
correlations

0=1.5: a random walk (Brownian noise)
ao=0.5 : a white noise



Scaling exponent as an index of fractal correlation
properties
Healthy Dynamics: Multiscale Fractal Variability
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Degraded fractal correlations under pathologic

L )
conditions
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Peng CK. et al., Chaos 5, 82 (1995);
Peng CK et al., J. Electrocardiol. 28, 59 (1996).

Turcott RG, Teich MC, Ann. Of Biomed. Eng. 24, 269 (1996).

Ho KKL. et al., Circulation 96, 842 (1997).
Mietus JE et al., Comp. Cardiol. 27, 753 (2000).

Congestive heart failure :

o ~1.3 for 30~10* beats

closer to a random walk.



Clinical Utility of DFA:

Fractal cardiac dynamics (DFA) can also predict
* survival rate of patients after myocardial infarction
(Huikuri et al. Circulation 101, 47, 2000).
* mortality of patients after stroke (Makikallio AM et al.
Neurology 62, 1822-1826, 2004)
* successful defibrillation in patients with out-of-hospital
cardiac arrest (Lin LY et al. Resuscitation 81, 297-301, 2010)
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Human motor activity fluctuations

Daily routjne (7:days)
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Fractal correlations in human motor activity
fluctuations
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Correlation analysis ﬂ

Daily routine (week 1)
Daily routine (week 2)

Constant routine
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*Strong correlations (a > 0.5 and close to 1)
*Stable over a wide range of time scales

*Independent of scheduled events and mean activity
levels Hu et al., Physica A 337, 307-18 (2004).



Human studies

1. Young control :

2. Elderly control:
Age-matched

4. Very old control:
1 Age-matched

5. Very old Late-stage AD:

Individual activity recording

24h average
waveform
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Altered activity fractal fluctuations with aging and AD
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* Robust scale-invariant patterns at time scales from minutes
to 10 h in young control

* Similar patterns in other groups at small time scales (<1 h)

* Reduction in fractal correlations at >~2h with aging and AD

Hu K et al. Proc Natl Acad Sci. 2009; 106(8): 2490-2494



Effect of aging and AD on fractal activity correlations
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* There was significant group effect (p<0.0001)

* The elderly control and very old control subjects had smaller a values than young
controls, as indicated by * (p<0.05).

*Early-stage AD subjects and age- and living condition-matched elderly controls
showed no significant difference.

*Late-stage AD subjects has significantly smaller a than the age- and living

condition-matched very old controls, as indicated by # (p<0.05).

Hu K et al. Proc Natl Acad Sci. 2009; 106(8): 2490-2494



Effect of aging and AD on the scale-invariant activity
regulation
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Why is it healthy to be fractal?

* Healthy function requires capability to cope with
the unpredictable

* Scale-invariant systems generate broad repertoire
of responses & long-range correlations —
adaptability & plasticity

* Absence of characteristic time scale helps prevent
mode-locking (pathologic resonances)

Neurobiological circuitry unknown and
meaningful models lacking!



“Understanding scale invariance (fractal) is one of the top
five great ideas in biology ...”

Sir Paul Nurse,
(winner of the 2001 Nobel Prize in Physiology or Medicine)

http://estream.med.harvard.edu:8080/ramgen/Content/CustomVideo/Leaders_in_Biomedicine/C_03202007105445.rm



Effects of the circadian system on physiological functions

Coordinated rhythms of ~24 h in Physiological
functions
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Daily pattern of cardiac risk
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Muller JE, etal., N. Eng. J. Med. 313, 1315 -1322 (1985).

Highest cardiac vulnerability/heart attacks at 9-11 AM

X
@hysiolo@ External activity factors

How to separate these two factors ?




Experimental methods to distinguish the effects of

intrinsic circadian system from behaviors
Data was collected in two complementary protocols performed in

dim light: _ .
Behavior cycles were uniformly Behavior was kept constant
distributed across all circadian phases
Forced desynchrony Constant routine
6:00 12:00 18:00 6:00 12:00 13:00

Day 2
Day 3 _W e
Day 4 //}7 // /A‘// ——]
Day 5 _

5 healthy subjects; Sleep perlod delayed 4 P healthy subjects; Semi-recumbent
hours each day; Same scheduled behavior and awake for 38 hours; identical
in 28-h sleep/wake cycles. snacks provided every 2 h.

Czeisldr CA et al., Science 284, 2177-2181 (1999).
Dijk DJ. & Czeisler CA, Neurosci. Lett. 166, 63-68
(1994).
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Schematic illustration of methods of assessing
endogenous circadian rhythm
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Need sensitive marker to determine the circadian phases.



Forced desynchrony protocol: a heartbeat recording
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Estimation of internal circadian phases
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Body temperature as the marker;

Phase = 0 for the minimum of body temperature.

Dijk DJ & Czeisler CA. Neurosci. Lett. 166, 63—68 (1994).
Brown EN & Czeisler CA. J. Biol. Rhythms;7, 177-202 (1992)

Khalsa SB, et al. J. Biol. Rhythms 15, 524-530 (2000).



Circadian rhythms in cardiac fractal correlations:

Fluctuation function F(n)
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* Fractal: F(n) ~n ©

* Circadian rhythms in «

* A sharp peak at 60-90 degrees
(corresponding to 9-11 AM);

* A minimum at 300-330 degrees
(corresponding to 1-4 AM).
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Hu et al., PNAS 101, 18223 (2004).



% deviation from mean o,

Circadian rhythms in cardiac fractal correlations:

®
sleep periods
10 T T T T T T T T T T T 8 T T T T .\ T T T T
Individual - scheduled sleep periods Scheduled sleep periods —group average. Data
- ® Data s
& N i —— Model
51 /e /Ny — Model { 4 2
j® e Ay E AN
SV N Y
0 L/ S // e 1 0Or / \\
? \\\ /. \\ B // \E //
> o7 4 |/ |
s | . o« | 4 . 1/ P=0.0003 L
® \% \_®
usual sleep 8 usual sleep
_ period period

0 60 120180240300360 60 120180240300360 (60 120180240300 360 60 120180240 300 360
Circadian phase (degrees) Circadian phase (degrees)

Consistent and significant circadian rhythms during sleep
periods.



% deviation from mean o

% mean activity

Circadian rhythm in motor activity
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» Significant circadian
rhythms in mean activity.

 The circadian pattern in o
with a peak at 9-11 AM is

from the pattern
in activity with a peak at 5-9
PM.



% deviation

% deviation from mean o

-10

Consistent circadian rhythms in cardiac fractal
correlations during the constant routine protocol
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Ivanov et al., PNAS 104, 10702 (2007)

* Abolished circadian rhythms
in mean activity

*Circadian rhythms in cardiac
fractal correlations persist



No significant influence of acute sleep deprivation
on the group average scaling exponent
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*The changes of the scaling exponent along the linear trend in 12 hours
were much smaller than the peak to trough amplitude of circadian rhythms.

*Linear trends of the scaling exponent (P<0.05) were significant only in 3
out of 9 subjects.

*No significant changes in the group average of the scaling exponent
throughout the constant routine protocol.



Circadian rhythms in fractal heartbeat correlations

» Similar circadian rhythms in o during
both protocols

* Maximum o during biological morning
* Circadian peak of a close to the time

window of highest cardiac risk observed
in epidemiological studies.
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Hypothesis:
Relevance to cardiac risk

v

Healthy Heart failure
I I Random walk
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A similarly circadian effect in subjects with congestive
heart failure may bring the value of their exponent a even
closer to the critical value of 1.5 at specific time window
during biological morning.



Animal study

* 8 control and 6 SCN-lesion (SCNx) Wistar
rats

* Under 10-day 12-hour:12-hour light/dark
condition (LD) followed by10-day constant dark
condition (DD)

* Movements cross the space in a cage
39x38x38 cm

* One data point every 4 minutes (10 sec
sampling at 500Hz)

* Core body temperature as circadian phase
marker. Mean circadian period of control rats
(24.1h) was used for SCNXx rats Scheer et al., Neuroscience 2005 132 465-477.




Circadian rhythms are abolished by SCN lesion
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Circadian rhythms in cardiac fractal correlations
DD protocol
= Protoro
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In control rats:

* scale exponent a=1.03+0.04 (Mean = SE)
* a significant circadian rhythm (p=0.0006)

* peak during the biological day (inactive phase for rats)
* peak to trough amplitude ~18% of the mean.



Effect of SCNx on fractal heart rate fluctuations:

abolished circadian rhythm
DD protocol
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SCNx rats showed no circadian rhythm in cardiac fractal
correlations (p>0.2).



Effect of SCNx on fractal heart rate fluctuations:
increased scaling exponent

DD protocol
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* A significant increases in the scaling exponent in SCNXx:
0=1.2+0.04 (Mean + SE) (p=0.01).

* Interaction between group and circadian phase (p=0.04)



Scaling exponent o

% deviation from mean o

Fractal patterns of heart rate fluctuations are
independent of mean heart rate
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Effect of SCN lesion on fractal heart rate fluctuations

Control SCNx
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The above results are focused on the time
scales < 1 hours

What about fractal patterns at larger time
scales?



Effect of SCN-lesion on fractal heart rate correlations
at a wide range of time scales
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Effect of SCN-lesion on fractal activity correlations
at a wide range of time scales

Correlation analysis

T Group average |
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* Scale invariant correlations in control rats from minutes
to at least 24 hours

* White-noise behavior at time scales >4 hours in SCN-
lesioned rats

) Independent of hgh’[ influences K. Hu et al., Neuroscience 149, 508 (2007).



Control Mechanisms for Scale-invariant Regulation

Integrative physiological system

Peripheral
oscillator

Peripheral
oscillator

*The SCN is a major node in the
network of fractal regulations.

The multi-scale influences of
the SCN may be through
neuronal interactions

within the SCN; or

between the SCN and other
neuronal nodes



Multiunit activity of the SCN
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Fractal correla

Fluctuation function F(n)

Fluctuation function F(n)
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Summary

Healthy cardiac dynamics show fractal regulatory
patterns

There is an endogenous circadian rhythm in fractal
cardiac control at time scales <~1 h

— Independent of behavioral and environment influences

— With larger scaling exponent during biological day and
smaller scaling exponent during biological night

— Similar in diurnal and nocturnal mammals

Removing the SCN (the master clock) abolishes the fractal
cardiac correlations at large time scales (> ~4h)

— The SCN functions beyond a simple circadian pacemaker

— There is a network responsible for the fractal cardiac
control and the SCN is one major node in the network

The SCN activity also display fractal patterns

— Due to the interactions between the SCN and other
neuronal nodes
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