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1. Description of the multiscale entropy (MSE) method, which 

quantifies the information content of a signal over multiple time 

scales

2. Applications of MSE to dynamical analysis of: 1) heartbeat in health 

and disease; 2) balance control; 3) red blood cell membrane 

motions; and 4) EEG signals

3. Description of the multiscale time irreversibility (MTI) method, which 

quantifies the degree of temporal irreversibility of a signal over 

multiple time scales

4. Applications of MTI to dynamical analysis of heartbeat in health and 

disease

Outline of My Talk: 



Two complementary approaches to gain 

some insight into physiologic control

• Write down the system’s equations of motion 

in terms of its components

• Quantify the macroscopic behavior of the 

system



Why do we need quantitative descriptions at 

the integrative system level?

Reductionist approaches never fully work in 

biological systems

Our goals

– To characterize and quantify the dynamics of 

biological systems at the integrative 

(macroscopic) level

– Understanding how the system responds to 

perturbations (micro to macro)



• Biological systems countinuously exchange 

information/matter/energy with their environment 

in order to adapt

• The complexity of a biological system is an 

indicator of the system’s capacity to adapt and 

function in an ever changing environment

• The system that can better adapt to the most 

external challenges (stresses) will have the 

advantage for survival

• Complexity degrades with pathology, aging & 

drug toxicity

Underlying Notions/Hypotheses



Measuring Complexity and 

Complexity-Loss

Complementary metrics & approaches needed: no 
single tool suffices!

� Time and frequency domain

� Fractal/multifractal scaling exponents

� Entropy-related (Information theoretic)

� Time irreversibility 

� Coupling/synchronization



How to Measure “Complexity”?

• Meaningful complexity measures should 

account for multiple time scales inherent in 

healthy dynamics

• We (Costa, Goldberger and Peng) introduced 

a new multiscale entropy (MSE) method 

motivated by previous work of Zhang and 

Pincus/Moorman et al and our own work on 

fractal scaling

* Phys Rev Lett 2002;89:068102 & Phys Rev E 2005; 71:021906



MSE is a method to quantify system’s

complexity by examining the information 

richness of an output signal

Costa, Goldberger, Peng: Phys Rev Lett 2002;89:068102      

Cardiovascular Engineering 2008

Advances in Adaptive Engineering 2009

Multiscale Entropy



Beyond FFT: Which is Physiologic ?

A

B

Surrogate data generator: Schreiber T, Schmitz A. Improved surrogate data 

for nonlinearity tests. Phys Rev Lett 1996;77:635–8.



Shannon’s Entropy

• Single variable:

(The entropy H(X) of a random variable is a measure of this average 

uncertainty.)

• Time series:



Choosing balloons randomly

• What is the best sequence of questions ?

• What is the average number of questions ?

Entropy: Information Theory Point of View

8 balls: 4 reds 2 blues1 green, 1 purple

Draw one randomly

?



Choosing balls randomly (con’t)

• Best set of questions (Huffman Code):

Red ?

Blue ?no

Green ?no

yes
1 question

yes
2 questions

yes 3 questions

Purple
no

3 questions

Entropy: Information Theory Point of View



• Average number of questions :

P(  ) x 1 + P(  ) x 2 + P(  ) x 3 + P(  ) x 3 

x 1 + x 2 +      x 3 +      x 3 = 1.75

• Entropy = 

=                                                               = 1.75 bits 

Choosing balloons randomly (con’t)

Entropy: Information Theory Point of View

∑−
i

ii pp )(log2

8

1

4

1

8

1

2

1









×







+







×







+







×+








×

8

1
log

8

1

8

1
log

8

1

4

1
log

4

1

2

1
log

2

1
2222

The entropy H(X) of a random variable is a 

measure of this average uncertainty



Kolmogorov-Sinai (KS) Entropy

The KS entropy measures the mean rate of creation of information, 

i.e., the decrease of uncertainty obtained by knowing the current 

state of the system given its past history



K2 Entropy

• um(i)={xi,…,xi+m-1}

• ni
m(r) is the number of vectors that satisfies: d[um(i)-um(j)] ≤ r 

(d is the Euclidean distance)

• Ci
m(r) = ni

m(r)/(N-m+1) 

• Cm(r) = ΣiCi
m(r) is the probability that any 2 vectors are close 

to each other 

• Grassberger and Procaccia defined K2, a lower bound of the KS 

entropy



Sample Entropy

• Sample entropy is defined as:

d is maximum difference 

between components of a 

vector

Self-matches are not 

counted

SE is the negative of the natural logarithm of the conditional probability 

that sequences close to each other for m consecutive data points will also be 

close to each other when one more data point is added.



Sample Entropy (SampEn)
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Ex: (m = 2)   SampEn = ln (patterns of length 2) – ln (patterns of length 3)

Template

↓↓↓↓

There are 2 vectors that match the template {u1, u2} and 1 vector that matches the 

template {u1, u2, u3}. Therefore, the number of matching patterns of length m = 2 is 

2 and the number of matching patterns of length m = 3 is 1. Repeat procedure for 

the next templates.



Multiscale Entropy (MSE) Algorithm 

Step 1. Coarse-grain the time series for looking at 

different scales 

Step 2. Calculate entropy for each coarse-grained 

series

Step 3. Plot entropy as a function of scale factor 

Step 4. Analyze the MSE curve profiles

References:

M. Costa, A.L. Goldberger, C.-K. Peng. Physical Review Letters 2002;89:068102

M. Costa, A.L. Goldberger, C.-K. Peng. Physical Review E 2005;95:198102



Coarse-graining Procedure for Multiscale 

Entropy (MSE) Analysis
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Coarse-graining schematic



Which is More Complex: 1/f or White Noise?

White 

noise

1/f noise
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• Entropy for coarse-grained 

white noise time series 

monotonically decreases 

with scale

• Entropy for coarse-grained 

1/f time series remains 

constant for all scales 

consistent with the fact that 

1/f noise has complex 

structures across multiple 

scales



Example I: Multiscale Entropy (MSE) of Heart 

Rate Dynamics

� Healthy  (n=18)

� Congestive Heart Failure (CHF; n=15)

� Atrial Fibrillation  (AF; n=9)
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Multiscale Complexity of Heartbeat 

Time Series Decreases with Aging 

Costa M, Goldberger AL, Peng CK.

Multiscale entropy analysis of complex physiologic time series. 

Phys Rev Lett 2002;89:068102. 
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MSE: Physiologic vs Surrogate Data

Thus, the physiologic time 

series is more complex than 

the phase randomized 

surrogate time series 
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Multiscale Entropy Analysis
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Complexity Tutorials & Software Freely Available at 

PhysioNet (www.physionet.org)



• CAST:  famous study designed to test the hypothesis that 

the suppression of isolated premature ventricular 

complexes (PVCs) in survivors of myocardial infarction 

(heart attack) would decrease death from sustained 

ventricular arrhythmias

• Patients were randomly assigned to receive one of 3 “anti-

arrhythmic” drugs or placebo 

• The mortality rate was 3 times higher for the groups taking 

“anti-arrhythmic” drugs than placebo

• The study was discontinued!

Complex Signals and Drug Toxicity: The Cardiac 

Arrhythmia Suppression Trial (CAST)



Question 

Could the harmful effects of these anti-

arrhythmic drugs have been anticipated?

VT/ VF



Underlying Hypothesis

• Drugs or other biologically active agents 

that decrease dynamical complexity are 

potentially toxic

• The greater the reduction in system 

complexity the higher the risk for the 

individual  



Complexity and Biotoxicity: 
Cardiac Drug Trial

p < 0.001 (lower curves 

versus upper curve)

Loss of complexity predicts mortality



Preliminary Results Summary

• Certain cardiac drugs decreased normal sinus 

rhythm complexity (especially flecainide and 

encainide) in the CAST study

• Multiscale entropy (MSE) was independent of 

left ventricular ejection fraction in predicting 

mortality

• No traditional heart rate variability measure 

predicted mortality

• Greater decrease in MSE, greater the risk  



Example II: Complexity and Human 

Postural Control

Europhysics Letters, March 2007



• Experiment I – Analysis of 

COP (sway) dynamics

15 healthy young

22 healthy elderly

22 fallers

• Experiment II – Noise-
Enhanced Human Balance 
Control *#

15 healthy young 

12 healthy elderly

*A  Priplata, J Niemi, J Harry, LA Lipsitz, and JJ 
Collins. Lancet 2003;362:1123.

# A  Priplata, J Niemi, M Salen, J Harry, LA Lipsitz, 

and JJ Collins. PRL 2002;89:238101

Experimental Design



Center of Pressure Data
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Time Series of Postural Sway



Multiscale Entropy (MSE) Analysis of Center 

of Pressure Time Series



Stochastic Resonance-based 

Intervention



Example III: Forecasting Epilepsy

In collaboration with McCarthy’s group



• RBC membranes have been know for decades to vibrate. 

These vibrations were thought to be random fluctuations 

• We have just found that these subtle vibrations have a 

multiscale complex spatial-temporal structure

• Further, as RBCs age in vivo, the membrane dynamics loses 

complexity (information content measured by entropy over 

multiple scales)

Example IV: Red Blood Cell (RBC) Membrane 
Motions*

Newly formed RBC         Older cell

Phase contrast microscopy 

movie (25 frames/sec) from a 

newly formed (left) and an older 

(right) RBC from the same 

donor.

* Work done in collaboration with Anne Nicholson-Weller and Ionita Ghiran at the Division of Infectious 

Disease and Allergy-Inflammation, BIDMC



Newly formed RBC                 Older cell



Loss of Human Red Blood Cell Membrane 
Complexity with in vivo Aging

Colors map the magnitude of the membrane vibrations. The multi-focal transient 

domains (white arrows) in the newly formed cell correspond to areas of complex 

membrane vibrations. The older cell has less complex (more static) dynamics.
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Analysis of RBC Membrane Dynamics 



Analysis of RBC Membrane Dynamics: (Con’t) 

Complexity analysis may be used to determine “physiologic” age and functionality 

of RBCs. 



Future Directions/Practical 

Applications

• To analyze the conditions under which donated blood for 
transfusion is stored. 

• Newly published data indicate that the infusion of stored 
erythrocytes is associated with an increased risk of 
infarction in patients with unstable angina, worsening 
shock in the case of trauma and acute respiratory 
distress syndrome in ICU patients. 

• It is possible that more physiologic methods of storing 
blood will prevent the erythrocytes from becoming pro-
inflammatory and pro-thrombotic. 

• Dynamical analysis may provide a robust means to 
perform high-throughput, systematic screening for the 
most physiologic blood storage techniques.



Fundamental Properties of Living Systems: 

Subcellular Domains to Integrated Organisms 

• Complex variability is a marker of healthy 

(adaptive) dynamics 

• Collapse of complexity: aging and disease 

(and biotoxins)

• Restoration of complexity is a marker of 

therapeutic benefit 



Part 2: Back to the Future: 
Multiscale Time Irreversibility (Time Asymmetry)
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• Fundamental property of non-equilibrium dynamics 

related to the unidirectionality of  energy flow

• Definition: lack of invariance of the statistical 

properties of a signal under the operation of time 

reversal

• Current methods are single scale-based and lead to 

inconsistent results in physiologic signal analysis

Multiscale Time Irreversibility (MTI): Background 

Costa, Goldberger, Peng. Phys Rev Lett 2005;95:198102



• A fundamental 

mechanism of time 

irreversibility is 

hysteresis

• The area inside the 

hysteresis loop 

equals the work done 

in the cycle

What is Hysteresis?



Multiscale Time Irreversibility (MTI): Hypotheses

• Time irreversibility is 

greatest for healthy 

physiologic dynamics, 

which have the highest 

adaptability

• Time irreversibility 

decreases with aging and 

disease



From: Jonnalagedda et al. PACE 1987;10:485 

Questions for Future Research (Con’t)

Time (min)

Exercise                            Recovery

Stop

R
R
 I
n
te
rv
a
l 
(m

s
e
c
) Single scale 

irreversibility

How long does it take 

to recover multiscale

time irreversibility and 

complexity?



• Coarse-grain time series

• Quantify the degree of temporal irreversibility for 

each coarse-grained time series

• Integrate the values of temporal irreversibility for 

each coarse-grained time series over a range of 

time scales

Multiscale Time Irreversibility (MTI): Algorithm



Multiscale Time Asymmetry Measure
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Phys Rev Lett, 2005;95:198102. 



1. For each coarse-grained time series, we:

i. Calculate the difference between consecutive data 

points

ii. Calculate the percentage of positive p(yτ >0) and 

negative p(yτ <0) increments

iii. The asymmetry index Ai(τ) is calculated by the 
equation: 

P(yτ >0) ln P(yτ >0) - P(yτ <0) ln P(yτ >0) 

P(yτ >0) ln P(yτ >0) + P(yτ<0) ln P(yτ >0)

2. Over a range of time scales the asymmetry 

index is calculated by the equation: Στ=1 Ai(τ ) .

Time Irreversibility of Interbeat Interval Time Series

Ai(τ) =



Time Irreversibility Analysis: Heart Rate Dynamics
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Beyond Traditional HRV: Which is Physiologic ?

A

B

A: Physiologic  B: Surrogate (phase randomized)



Applying New Multiscale Measures

Thus, the physiologic time series is more complex and more time 

irreversible than the phase randomized surrogate time series 

Multiscale Entropy Analysis
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Multiscale Time 

Asymmetry

• Physiologic:

Asymmetry index = 3.4

• Surrogate:

Asymmetry index = 0.5



Final Conclusions

• Complex variability is a marker of healthy 

(adaptive) dynamics 

• Complexity breaks down with aging and disease

Future Directions

• To develop mathematical models that account for 

the observed multiscale dynamical properties of 

physiologic systems

• Quantify other properties of complex systems: a) 

their degree of non-stationarity, b) coupling 

between signals


