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Outline of My Talk

What is complex signals informatics (CSI)?

Dynamical assays: new approach to
personalized medicine?

What is the NIH-funded (NIBIB/NIGMS)
PhysioNet Resource for Complex Physiologic
Signals and can it help you?



Complexity =
Nonlinear Dynamics
= Chaos Theory

e AL A L I e e L

But, nonlinear chaos is special type of

dynamics and has absolutely nothing
o i to do with chaos (“things are a mess’)

Systems - A W=l i usual sense (another talk)




Nonlinear Dynamics in Everyday
Language

« “Straw that broke the camel’s back” (small change
causes big, discontinuous effect)

« “Life is a game of inches”: senSItIVIty to initial
conditions <

* Whole is greater than sum of parts (“"emergence”)
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What is Complex Physiologic Signals
Informatics (CSI)

And, frankly...
Why Should You Care?



What is Biomedical Informatics?

Biomedical Informatics:
Methods, Techniques and Theories

.. . Imaging Clinical Public Health
Bioinformatics  pformatics Informatics Informatics
Molecular & Tissues & Individuals Populations
Cellular Organs (Patients) & Society

Processes

Source: Journal of Biomedical Informatics



But, Between Genomics &
Diagnostics Something is Missing...

Biomedical Informatics:
Methods, Techniques and Theories

. Imaging 9 Clinical  Public Health
Bioinformatics

Informatics . Informatics Informatics

Molecular & Tissues & Individuals Populations
Cellular Organs

(Patients) & Society
Processes



More Complete Picture

Biomedical Informatics:
Methods, Techniques and Theories

v

Imaging Complex Signals Clinical Public Health
Bioinformatics Informatics Informatics Informatics

Informatics
Molecular and Tissues Diagnostic & Individuals  Populations
Cellular Processes  and Organs Functional (Patients)  And Society

Dynamics



Heart Rate (bpm)

A Friendly (Ungraded!) Test

So, how good a physiologist/dynamicist are you?
Can you tell which heart rate pattern is healthy?*
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*Assume comparable activity. Note: only one is normal; other 3 from subjects at
high risk of sudden cardiac arrest or stroke



Heart rate (bpm)

Beyond FFT: Which is Physiologic ?
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Answer: Stay tuned for Madalena’s talk



The Heart: Cardiologist’'s
Reductionist) View of Things
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The Heart—More Systemic
(Networked) Model

Cardioreguiaiony
carer

Periphera
MW vasoconstriction

Giossopharyngeal
and vagal aflerants
from high-prassurs

= Aldoslerone

Angeolansin ||
relaash

t Sodute-free waler excretion
; Sodium excrelon

Cascades of coupled,
nonlinear feedback
networks interacting over
a wide range of
temporal/spatial scales

Nature 1999:399:461
PNAS: 2002:99 (Suppl 1):2466
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Three Key Concepts {ﬁ@

1. Physiologic signals and anatomic structures
are the most complex in nature

2. Important clinical information is "hidden”
(encoded) in nonlinear fluctuations and
patterns

3. Complexity degrades with pathology, aging &
biotoxicity

The way physiology changes from one instant to the
next tells an important story about health/disease




Why are Physiologic Signals
So Complex”?

Healthy physiologic systems are regulated by
many interacting control mechanisms that
operate over multiple time scales

Therefore, the output signals exhibit temporal
correlations: current value (t=t) is partially
determined by previous values (t, 4, t,,...)

Physiologic systems have to adapt to an ever-
changing, unpredictable environment



Some Hallmarks of Healthy,
Adaptive Complexity

Healthy Heart Rate Dynamics
140+
e I“"“y i L[ iy s q
] - A o |
123 i J\rl'lf‘\b'ﬂ v "”fl'l‘-""'n’.m | rﬂ{,lr‘qul' WAl ll'r,L
B0 -

40r—Tr—T"T T T T T T T T T T T T
0 3] 10 15

Time (min)

Heart Rate (bpm)

Nonstationarity
- Statistics change with time

Nonlinearity
- Components interact in unexpected ways ( “cross-talk”)

Multiscale (fractal) Organization
- Fluctuations/structures have no characteristic scale

Time lrreversibility
- Nonequilibrium dynamics underlie fluctuations



Some Hallmarks of Healthy,
Adaptive Complexity

Healthy Heart Rate Dynamics
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omplicated vs. Complex

kaleidoscope  Vs. fractal



Mandelbrot Set:
Self-Similar Complexi

Y Le i “RE o o

Simple recipe!
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In Simplest Terms: What is a Fractal?

Selt-Similar Structure

Fractal: A tree-like object or
process, composed of
sub-units (and sub-sub-
units, etc) that resemble
the larger scale structure

* This internal look-alike
property is known as self-
Similarity or scale-
invariance

* Fractals have no
characteristic (single)
R scale




Fractal Coastline: Self-Similarity




LOG LENGTH OF FRACTAL LINE

Fractals and Power Laws

LOG RULER LENGTH

Fractals produce
power laws:

smaller the
measuring stick,
longer the
coastline



Fractals Also Universal Design Principle in

Nature
Self-Similar Structure Self-Similar Dynamics .
o 300 min Fractal : Complex tree-like

object or hierarchical

process, composed of sub-

ol units (and sub-sub-units,
etc) that resemble the

150 —= Iarger scale design
M As noted, this internal look-
W alike property is known as

3w self-similarity or
scale-invariance
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Fractal Distribution Network:
The Bronchial Tree




Fractal Arteriogenesis:
Coronary Artery Tree




Fractals in the Body (Con't):
Renal Vascular System

Plate 2: Cast of a.child’s kidney, venous and arterial system,
© Manfred Kage, Institut fiir wissenschaftliche Fotografie.

Peitgen, Jurgens and Saupe,
"Chaos and Fractals", p. 176
Springer-Verlag 1992,



Fractal Heart:
His-Purkinje Conduction Network




Heart rate (bpm)
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Healthy Heartbeat is Fractal
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PBS-NOVA Show on
Complexity/Fractals

“Hunting the Hidden Dimension”:
October 28, 2008

Mysteriously beautiful fractals are shaking up the world
of mathematics and deepening our understanding of - nature.

I..I‘"

DIMENSION:




Why is it Physiologic to be Fractal?

« Healthy function requires capability to cope
with unpredictable environments

« Scale-free (fractal) systems generate broad
range of long-range correlated responses —
adaptability

* Absence of characteristic time scale helps
prevent getting locked into a rigid (single)
pattern of response (mode-locking) - Goose-
Step or Tacoma Narrows Bridge Syndromes




Disastrous Pathologic
Oscillations in Engineering
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The Tacoma Narrows Bridge Collapse (1940)



Collapse of Complexity with Disease

Healthy Dynamics: Multiscale Variability

Healthy dynamics
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Loss of Complexity with Disease

* The output of physiologic systems : |[||I rlﬂ IlI II||| I‘l P|.
often becomes more regular and nu' Ub' ] 'ul l|'“|| ||
|.

predictable with disease

* The practice of medicine not possible
without such predictable behaviors — = _ i/
doctors look for characteristic v el ([T T
patterns: principle of stereotypy

* Healthy function: multi-scale,
information-rich dynamics much
harder to characterize!




The Arrow of Time: Loss of
Temporal Asymmetry in Dying Heart

Normal Heart. Time Asymmetric

1 sec.



Loss of Nonlinear Complexity
Resolves Medical Paradox

Patients with wide range of disorders/syndromes often display
strikingly predictable (ordered) dynamics: Reorder vs. Disorder

Examples: Cheyne-Stokes breathing
Obstructive sleep apnea
Parkinsonism / Tremors
Obsessive-compulsive behavior
Nystagmus
Monomorphic ventricular tachycardia
Torsade(s) de pointes
Hyperkalemia — “Sine-wave” ECG
Cyclic neutropenia
Cyclic flow reductions in arterial stenosis
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* Personalized Medicine and Complex
Signals Informatics
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Measuring Complexity and
Complexity-Loss

Complementary metrics & approaches needed.:
no single tool suffices!

» Time and frequency domain

» Fractal/multifractal scaling exponents
» Entropy-related (Information theoretic)
» Time irreversibility

» Coupling/synchronization




What is HRV? Who Cares?

Heart Rate Variability (HRV): not same as
complexity

Thousands offpape_r_s—no clinical |
alpﬁllcatlons of traditional HRV in practice:

“gap”

Important physiologic implications and
some emerging clinical ones




Complex Dynamics:
Theme of Recent Course

Heart Rate Variabilii

Syllabus freely
o0 available at
T WP NIH/PhysioNet

e s website

At
The Fairmeant Copley Plaza Hotel
138 St. James Avenue, Boston, MA 02116

Under the direction of
Ary L. Goldberger, MD
George B. Moody
Chung-Kang Peng, PhD

www.physionet.org

Presented by
ﬂﬂ_tﬂ HARVARD MEDICAL SCHOOL
5‘ Lontine J

w Department of inering Edercation

! ﬁ\ BETH ISRAEL DEACONESS MEDICAL CENTER
“RL Departrent of Medicine

April 20 - 22, 2006

Heart Rate Variability




From RR to NN

Sinus rhythm time series is derived from the RR sequence by
extracting only normal sinus to normal sinus (NN) intervals

T

NNO | ONNT | NNZ | NN3 | NN4 | NN5 | NN8




Common
Time Domain Measures

AVNN : Average of all NN intervals
SDNN : Standard deviation of all NN intervals

SDANN : Standard deviation of the average of NN intervals in all 5-
minute segments of a 24-h recording

SDNNIDX (ASDNN) : Mean of the standard deviation in all 5-
minute segments of a 24-h recording

rMSSD : Square root of the mean of the squares of the differences
between adjacent NN intervals

PNN50 : Percentage of differences between adjacent NN intervals
that are >50 msec; one member of the larger pNNx family



Common Frequency Domain Measures

Total power : Total NN interval spectral power up to 0.4 Hz (same as
variance)

ULF (Ultra-low frequency) power : Total NN interval spectral power up to
0.003 Hz. of a 24-h recording

VLF (Very Low Frequency) power: Total NN interval spectral power
between 0.003 and 0.04 Hz.

LF (Low Frequency) power: Total NN interval spectral power between 0.04
and 0.15 Hz

HF (High Frequency) power : Total NN interval spectral power between 0.15
and 0.4 Hz.

LF/HF ratio : Ratio of low to high frequency power



“Comb” test




Fasting and HRV

a) Baseline study for fasting + placebo (day 1) Study after 72 hour fasting + placebo (day 4)
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Chan JL, Mietus JE, Raciti PM, Goldberger AL,
Mantzoros CS. Clin Endocrinol 2007; 66:49-57



Cautions: HRV Dependent On...

« Data length

* Age

* Physical conditioning

* Activity

« Sleep/wake cycle and
sleep phase

* Disease

* Drug effects

« Gender

* Posture, etc, etc



Measuring Cardiac Vagal Modulation:
PNNx Family of HRV Statistics

* 1984: Ewing et al. introduced the NN50

— Mean number of times per hour in which the change in successive
NN intervals exceeds 50 msec

« 1988: Bigger et al. introduced pNN50
— NN5SO count / total NN count

« 2002: Mietus et al. introduced the pNNx family of statistics

— NNx count / total NN count for values of x=0

— PNNXx for x<50 msec provided more robust discrimination between
groups of interest



PNNX

PNN distributions for © Moan pA istrbatons
young subjects (n=20, T S
ages 21-34) and old 2 PR ?
subjects (n=20, ages %

68-85) B o

| | . | o e
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p-values for the p-Value of Group Differences
separation of groups —pneo
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Data from www.physionet.org



Loss of daytime cardiac vagal modulation
in sleep apnea hypopnea syndrome

= Controls (n=14)
— Sleep Apnea (n=16)
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Unpublished data courtesy of Steven Shea and
Michael Hilton, Brigham and Women'’s Hospital



RR interval (sec)

NN interval (sec)

Real world data are messy!

Sinus rhythm time series in the presence of
frequent PVCs
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NN interval (sec)

NN interval (sec)

Outliers due to missed normal beat
detections
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PhysioNet: The NIH Research Resource
for Complex Physiologic Signals




NIH Research Resource for Complex
Physiologic Signals: “PhysioNet”

Phy=inToolkit

PhysioNet B

the research resource for
complex physiologic signals

Wational National

I
Institute of Institute of
Biomedical BIB gbé:%% General

Imaging and Y Byt ME.dlcal

Bicengineering 4 Sciences

www.physionet.org

>800,000 visitors to date!

Free Data, Software &Tutorials on Complexity and Fractals



Faces of PhysioNet

1- George Moody

2- Roger Mark

3- Ary Goldberger
4- Mohammed Saeed
5- Mauiricio Villarroel
6- C-K Peng

7- Madalena Costa
8- Joe Mietus

9- Gari Clifford




What is PhysioNet?

A unique NIH-funded (NIBIB/NIGMS) web-based
resource intended to support current research &
stimulate new investigations in the study of complex
biomedical and physiologic signals

Three closely interdependent components:

= PhysioNet“’__ﬂ
. . ol
Q Data repository (PhysioBank) 95

Q Free-access website (physionet.org)
Q Library of related software (PhysioToolkit)



Design of the PhysioNet Website

Scientific Community-at-Large

PhysioNet

Gateway to the
Resource

PhysioBank PhysioToolkit

Complex Open Source
Multiparameter Software

Databases For Data Analysis
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What is in PhysioBank?

PhysioBank currently includes:

>40 collections of cardiopulmonary, neural, and
other biomedical signals from healthy subjects
and patients with a variety of conditions with
major public health implications, including
sudden cardiac death, congestive heart failure,
epilepsy, gait disorders, sleep apnea, and

aging.
u@

éjzpl loBank

FavEaEs
/1\ =
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Example of a PhysioBank Dataset

Many data collections in
PhysioBank come from
published studies

Maturation of gait dynamics: stride-to-stride variability

and its temporal organization in children

J. M. HAUSDORFF,'2* L. ZEMANY,! C..K. PENG,'* AND A. L. GOLDBERGERM
\Margret H. A. Rey Laboratory for Nonlinear Dynamics in Medicine, *Gerontology
Division and Department of Medicine, Beth Israel Deaconess Medical Center, Boston 02215;
and *Harvard Medical School, Boston, Massachusetts 02115

Hausdorff, J. M., L. Zemany, C-K. Peng, and A. L.
Goldberger. Maturation of galt dynamics: stride-to-stride
varlability and its temporal organization in children. . Aopl.
Physiol. 86(3): 1040-1047, 1989.—In very young children,
Immature control of posture and galt results In unsteady
locomation. In childrenof ~3 yrof age, gait appears ralativaly
mature; however, it is unknown whether the dynamics of
walking change beyond this age. Because stride dynamics
depend on neural control, we hypothesized that motor control
would continue to develop beyond age 3. To test this hypoth-
esls, we measured the gait cyele duration on astride-by-stride
basis in 50 healtly 3-to 14-yr-old children (25 glrls). Measure-
ments of stride-to-stride variabllity were significantly larger
both in the 3- and 4-yr-old children, compared with the 6- and
7-yr-old children, and In the & and 7-yr-old children, com-
pared withthe 11- to 14-yr-old children. Measuremants of the
temporal organization of galt also revealed significant age-
dependent changes. The effects of age persisted even after
adjusting for height. These findings indicate that mature
stride dynamics may not be completely developed even in
healthy 7-yr-old children and that different aspects of stride
dynamics mature at different ages.

age; walking; spectral analysis; fractal analysis

one stride to the next displays a subtle, “hidden”
temporal structure that has been associated with long-
range, fractal organization (11, 12). In contrast, in
persons with neurological disease and in older persons,
especially those with a history of falls, stride-to-stride
variahility increases, and the temporal organization of
stride time dynamics is altered as well (3, 4, 7, 8, 10,
14).

These studies suggest that analysis of the stride time
dynamics may also provide a window into the develop-
ment of neuromuscular control in children. Given the
apparent parallels between the immature gait of chil-
dren and the unsteady gait of older persons and per-
sons with neurological impairment (23], along with the
subtle continued development of neural control beyond
age 3, we hypothesized that stride time dynamics will
not be fully matured at this age. In the present study,
we tested this hypothesis by measuring stride-to-stride
fluctuations in the gait cycle duration of healthy 3- to
14-yr-old children. More specifically, we sought [ to
characterize the development of mature stride dynam-
ics, 2) to determine at what ages changes in gait
dynamics occur, and J) to compare the gait dynamics of

Hausdorff et al., J Appl Physiol 86(3)1040-7 (1999)

PhysioBank

physiologic signal archives
for biomedical research

PhysioNet - PhysioBank - PhysioToolkit

I Search

Advanced Search | Tour | Mirrors
How to Cite | Contributing | FAQ

Getting Started - Signal Archives - Chart-O-Matic - About PhysioBank

Gait Maturation Database and Analysis

In very young children, immature control of posture and
gait result in an unsteady gait. By about three years of
age, gait appears relatively mature. However, it is
unknown whether the dynamics of walking change
beyond this age. Because stride dynamics depend on
neural control, we hypothesized that gait dynamics
would continue to develop beyond age three. To test this
hypothesis, we measured the gait cycle duration ona
stride-by-stride basis in healthy children (n=50) ages 3 to
14 years old, using a portable foot-switch device
inserted inside of shoes. The figure on the right shows
representative walking time series of 4, 7, and
11-year-old children

e You are invited to download the complete
database (available as a gzip-compressed UNIX
tar archive (121K), or as individual files) and
perform your own analyses. (WinZip users, please
read this important note )

Time Series of Stride Dynamica

Siride Time fsec) Siride Time fsec)

Srid e Time (sec)

4 Year Old

7 Year Old

11 Year Old

ket e

T
a 1na 200 ana 400

Stride Number

e A Journal of Applied Physiology article describing an initial analysis of these data can be viewed in

HTML format, PostScript format, and POF format.

* For more information, please contact JM Hausdorff (jhausdorff@caregroup. harvard. edu).




What is PhysioToolkit?

Open-source software for physiologic signal
processing and analysis:

1 Detection of physiologically significant events using
both classical techniques and novel methods

d Interactive display & characterization of signals;
creation of new databases

 Physiologic signal modelling and for quantitative
evaluation and comparison of analysis methods

¢ PhysioNet =

u Jtl/ : &

//%h

¢ ¥ PhysioBanl
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Some PhysioNet Contributions Include
Both Data and Software

Manuscript

Evaluation of an Automatic Threshold Based
Detector of Waveform Limits in Holter ECG
with the QT database

R.Jané!, A. Blasi®, ]. Garcia?, P, Laguna®
1Dep. ESAII Centre de Recerca en Enginyeria Biomedica, UPC, Barcelona, Spain.

2Dep. Ingenieria Electrénica y Comunicaciones, Centro Politécnico Superior. Univ. de Zaragoza,
Spain

Abstract

D ata In this paper we evaluate a single-lead threshold based ECG wave boundaries detector with a QT S Oftwa re
database developed for validation purposes. We also identify its different sources of error

distinguishing those that come from precision errors in boundary location from those that come

from morphology misclassification. We obtain 71% of records with correct morphology identification

T TS T T T T i boundary location within manual referees variance. The re
v st - Phy - Phy:

ipond to signals with poor SNR at the T wave, or morphology PhysioNet - PhysioBank - PhysioToolkit
PhysioBank | Search | BXPerts. PhysioToolkit search
hysiol ignal archi ftware fi .
;ry:::;j;::lg:e“mws Advanced Search | Tour | Mirrors E:;:::i::z:mz:::;;lginmmg Advanced Search | Tour | Mirrors
How to Cite | Contributing | EAQ

How to Cite | Contributing | FAQ

Getting Started - Signal Archives - Chart-O-Matic - About PhysioBank Site Map RisiClli bRl LN ERER BT TR
‘() and others considered of interest. However, it is necess JUETLEIE

sach beat well defined. Automatic methods offer a useful I

The QT Database diagnostic protocols in ECG signal processing equipment

1als, as all biomedical signals, have several characteristic
T for automatic detectors: noise contaminating the signal
| vell defined waveform morphologies, absence of some wave

‘ | opear), ambiguity when defining where the wave boundarie

S SSRE ™ PN et ol M »e a problem for expert cardiologists), etc. All those diffict
Iter ECG recordings, due to the non-rest conditions of the

Getting Started - Software Index - Matlab Software - WFDB Software -

QRS detection and waveform boundary

recognition using ecgpuwave

Name

BO. 5 GE Ol G v (B 1 GG 1) @6 5| @ ecgpuwave - QRS detector and waveform limit locator

] | Synopsis
i 'le «“L Restial Sy e e

ecgpuwave -1 record -a annotator [ options ... ]

. ) . . Description
Each of the 105 records consists of a (text) header file, a (binary) signal file, and up to 9 (binary)
annotation files, identified by suffix:
ecgpuwave analyses an ECG signal from the specified record, detecting the QRS complexes
Suffix Meaning and locating the beginning, peak, and end of the B QRS, and STT waveforms. The output of
nea header file, describing signal file contents and format ecgpuwave is written as a standard WFDB-format annotation file associated with the specified
. signal file . annotator. This file can be converted into text format using rdann(1) or viewed using wave(1) .
Latr reference beat annotations from original database (not available in all cases) The QRS detector is based on the algorithm of Pan and Tompkins (reference 1) with some
man reference beat annotations for selected beats only improvements that make use of slope information (reference 2). Optionally, QRS annotations



Other Contributions with Data & Software €
@ ooz ——

EPL, 77 (2007) 63008
doi: 10.1209/0295-5075/77/68008

Noise and poise: Enhancement of postural complexity in the
elderly with a stochastic-resonance—based therapy

www.epljournal.org

Manuscript

M. Costal, A. A. PriraTa??, L. A, LipsiTz?, Z. Wu?, N. E. HuanG®, A. L. GOoLDBERGER! and C.-K. PEng!

PhysioNet - PhysioBank - PhysioToolkit

PhysioBank | [ Search
physiologic signal archives
for biomedical research Advanced Search | Tour | Mirrors

How to Cite | Contributing | FAQ D a t a

Getting Started - Signal Archives - Chart-O-Matic - About PhysioBank

Noise Enhancement of Sensorimotor Function

Site Map
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I. Background

Heart rate variability (HRV) analvsis attempts to assess cardiac autonomic regulation through quantification of sius rhythm variability. The sius thythm times
series is derived from the QRS to QRS (RR) interval sequence of the electrocardiogram (ECG) by extracting only normal sinus to normal sitms (INIV) interbeat
intervals_ Relatively high frequency variations in sinus rhythm reflect parasyvmpathetic (vagal) modulation and slower variations reflect a combination of both
parasvmpathetic and sympathetic modulation and non-autonomic factors [1-5].

*Including discussion of special problems of HRV in elderly
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Body as servo-mechanism type machine

* Importance of corrective mechanisms to keep variables “in
bounds”

* Notion of “constant,” “single steady-state,” or equilibrium-like
conditions
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 |s spatio-temporal complexity a mechanism of healthy
stability?

« And, therefore, do we need fundamentally to rethink all
notions of mechanisms and causality in physiology and
open search for dynamical biomarkers of aging?
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