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Abstract

Repolarization alternans, a beat-to-beat alternation in action potential duration, has been

causally linked to the onset of cardiac reentry. Anti-alternans control strategies can eliminate

alternans in individual cells by exploiting the rate dependence of action potential duration. The

same approach, when applied to a common measuring/stimulating site at the end of a cardiac

fiber, has been shown to have limited spatial efficacy. As a first step towards spatially distributed

electrode control systems, we investigated “off-site” control in canine Purkinje fibers, in which

the recording and control sites are different. We found that alternans can be eliminated at, or

very near, the recording site, and that varying the location of the recording site along the fiber

causes the node (the location with no alternans) to move along the fiber in close proximity to the

recording site. Theoretical predictions based on an amplitude equation agree with our experimen-

tal findings, and illustrate how the deviation between the recording site and the actual position

of the node is dependent upon electrotonic effects. Computer simulations using a Purkinje fiber

model confirm these theoretical and experimental results. Although off-site alternans control does

not suppress alternans along the entire fiber, our results indicate that placing the node away from

the stimulus site reduces alternans amplitude along the fiber, and may therefore have implications

for anti-arrhythmic strategies based on alternans termination.

PACS numbers:
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I. INTRODUCTION

When paced rapidly, cardiac cells often exhibit a type of dynamics called repolarization

alternans, which is a beat-to-beat alternation in the duration of the action potential. In

the heart, such alternans induces spatial and temporal dispersion in refractoriness, which

increases the risk of occurrence of potentially fatal cardiac arrhythmias. This is particularly

the case when the tissue exhibits spatially discordant alternans, where different regions

are alternating out of phase. Evidence of causality between alternans and the onset of

arrhythmias has been demonstrated in both experiments [1, 7, 11] and computer simulations

[7, 12].

Because of this link, alternans control targeted at eliminating alternans is currently under

investigation as a potential antiarrhythmic strategy. Most of this work is based on model-

independent, adaptive control algorithms, e.g., delayed feedback control (DFC). In this

method, which is based on the Ott-Grebogi-Yorke (OGY) [10] technique for chaos control,

small perturbations are applied to the timing of the next excitation in an attempt to force

the state of the system toward the (unstable) period-1 fixed point.

DFC has been used experimentally to control repolarization alternans in small pieces (i.e.,

sufficiently small to be point-like) of bullfrog hearts [8]. DFC algorithms have also been used

to control a related type of alternans (atrioventricular (AV) nodal conduction alternans; a

beat-to-beat alternation in the conduction time through the AV node) [2, 4, 9]. To date, AV

node alternans control is the only alternans control study performed on human subjects.

While repolarization alternans may be successfully eliminated in a system that does

not have spatiotemporally varying repolarization and wave-propagation dynamics, initial

analytical work as well as computer simulations of one-dimensional tissue fibers suggest

that only in the case of spatially uniform alternans of small amplitude can alternans be

terminated along the whole fiber. In cases where concordant alternans show variation in

space, as well as in the more extreme cases of spatially discordant alternans, eliminating

alternans at one site will result in alternans being eliminated only up to a short distance

away from this stimulation site [3, 5]. Experiments in canine Purkinje fibers qualitatively

confirm these predictions [3].

These studies therefore suggest that spatially distributed multiple-electrode systems will

be necessary in order to eliminate repolarization alternans in the heart. As a first step
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towards this goal, we decided to investigate the possibility of recording action potential

duration data from one location and use that at a remote stimulus site. In experiments on

canine Purkinje fibers as well as in computer simulations we show here that by applying this

type of off-site control, alternans can be eliminated at a desired location which can be far

away from the stimulus site.

II. METHODS

A. Ex vivo recordings

B. Coupled map model

Because of limitations of existing ionic Purkinje fiber models in reproducing basic ex-

perimental findings such as the conduction velocity (CV), we have utilized a coupled maps

model such as that of Ref.[6]. This model is based on fits to experimental action potential

duration (APD) and CV restitution curves. The model equations are:

APDi+1 = f(DIi) + ξ2∇2APDi+1 − w∇APDi+1 (1)

DIi+1(xi) = T +
i−1∑
j=0

∆x

θ(DIi+1(xj))
−

i−1∑
j=0

∆x

θ(DIi(xj))
− APDi+1(xi), (2)

where f(DIi) = 31+160/(1+exp(−(DIi−43)/36)) is the APD restitution curve, θ(DIi) =

1+1.4/(1+exp(−(DIi−7)/1.4)) is the CV restitution curve, and T is the pacing cycle length.

The parameter ξ determines spatial coupling. We set ξ = 0.1 cm so that discordant alternans

occurred at a pacing rate similar to that seen in our experiments, and w = 0.002 cm. No-

flux boundary conditions were implemented. When Eqn. 1 is discretized using forward finite

differences with a three-point stencil for the Laplacian, the solution is obtained by solving

a linear tri-diagonal matrix system. We used a fiber length of L = 2 cm, which is similar to

the length of the canine Purkinje fiber, and a ∆x of 0.01 cm.
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C. Alternans control

As in our previous work [3], we apply a delayed feedback control algorithm, but we now

separate the stimulus site and the recording site

Tn+1(0) =





T ? for ∆Tn+1 > 0,

T ? + ∆Tn+1 for ∆Tn+1 ≤ 0,
(3)

with

∆Tn+1(0) =
γ

2
[APDn+1(xr)− APDn(xr)] , (4)

where γ is the feedback gain and BCL? is the nominal BCL. We use x = 0.0 cm as the

stimulus site, but vary the recording site (xr), at which successive APD values are measured,

along the fiber. We use γ/2 = 0.5, except when otherwise noted (Fig. 6). also true for exps?

III. RESULTS

A. Experimental results

In a previous study, we have shown that when applying alternans control from a com-

mon recording/stimulating site at the proximal end of a Purkinje fiber alternans may be

diminished at that location, but persists distal to it [3]. An example of this type of control

dynamics is shown in Fig. 1(b). Based on this result, we hypothesized that using APD

values recorded at more distal locations on the fiber, while keeping the stimulus site at the

proximal end, would cause an APD node to be formed at the recording location, i.e., that

alternans would be eliminated at the recording site, but not away from it. Using six record-

ing electrodes placed equidistantly along the 2 cm fiber, we found that this is indeed the

case [Fig. 1(c-g)]. Hence, by applying this type of off-site control, APD alternans can be

eliminated at any desired location which can be far away from the stimulus site.

B. Simulation results

In order to investigate the non-local control in more detail, we used a coupled map model

based on experimentally recorded APD and CV restitution curves (see Methods). When

applying on-site control, APD alternans is almost entirely eliminated at the proximal end,
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Figure X.  Non-local control of APD dynamics in a canine cardiac Purkinje fiber.  APD 
of n (red) and n+1 (blue) beats are displayed at equally spaced recording sites (1-6) along 
the fiber.  The recording site used for control (arrow) was shifted sequentially from site 6 
(upper left panel) to site 1 (lower right panel).  Note adequate control of APD alternans at 
the control site, with deviation of APD spatially about the control site.  

FIG. 1: Should be (a) no control, (b)-(g) control at microelectrode 1-6. Representative example.

Such node placement occurred robustly in x experiments in y different fibers.

but persists distally, in agreement with our previous experimental and theoretical results

[Fig. 2(b)] [3]. When applying off-site control using the locations corresponding to the

remaining five microelectrodes in the experiments, the same phenomenon occurs: APD

alternans is diminished at the recording site, but persists away from it [Fig. 2(c-g)].

When xr is not located at either end of the cable, the diminishing of APD alternans

manifests as an APD node (where APD is constant) separating out-of-phase regions [Fig. 2(c-

f)]. This node forms very close to xr. In the cases where xr is located at either the proximal

or the distal end, no node is formed, but the APD alternans magnitude displays a minimum

at xr [Fig. 2(b and g)].

The APD profiles are very near symmetric with respect to the recording site, such that

the profiles for xr = 2.0 cm (1.6, 1.2) are mirror images of those for xr = 0.0 cm (0.4,

0.8). Such symmetry is found for a range of relatively slow pacing rates (yet fast enough
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to induce alternans). However, for faster pacing rates, the spatial symmetry starts to break

and the APD profiles become slightly asymmetric, similar to the asymmetry observed in

the experimental recordings (Fig. 1). Such asymmetry is consistent with the effects of CV

restitution at fast pacing [12, 13], and, indeed, in our coupled maps simulations, it disappears

when the CV restitution function is replaced by a constant value.
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FIG. 2: Non-local control in coupled maps model with a BCL of 180 ms. (a) No control, (b)-(g)

control at locations xr = 0.0, 0.4 0.8, 1.2, 1.6, and 2.0 cm (indicated by arrows).

At even faster pacing, a discordant node forms prior to the application of alternans control

[Fig. 3(a)]. In this case, off-site control is still successful in eliminating alternans close to the

recording site, but the position of the resultant node is further from xr when xr is towards

the distal end of the fiber.

Figure 4 shows a summary of the pacing rate dependence using the spatially averaged

alternans magnitude as a measure of the effect of the off-site control application. The

alternans magnitude is greatly reduced when the recording site is towards the middle of

the cable. More proximal or distal recording sites also reduce the alternans magnitude
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FIG. 3: Non-local control of spatially discordant alternans in coupled maps model with a BCL of

140 ms. (a) No control, (b)-(g) control at locations xr = 0.0, 0.4 0.8, 1.2, 1.6, and 2.0 cm (indicated

by arrows).

significantly, except when there is spatially discordant alternans prior to control (BCL =

140 ms). Only in the case of spatially uniform and relatively small-amplitude concordant

alternans (BCL = 200 ms), is alternans eliminated throughout the fiber, both for on-site

and off-site control.

C. and we have a theory, too!

The APD at the nth beat along the cable for the fundamental standing wave mode

neglecting CV restitution effects is given by:

APDn = APDc + (−1)na(x) (5)

where APDc is the APD at the periodic fixed point of the map and

a(x) ≈ a(L)/2 cos
πxr

L
+

(
π2ξ2

γL2
− 1

)
cos

πx

L
, (6)
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FIG. 4: Effects of off-site control on alternans amplitude. Numbers indicate values of xr. Prior to

control, there is spatially concordant alternans for pacing rates 150-190 ms and spatially discordant

alternans at a pacing rate of 140 ms.

where ξ is the spatial coupling length and L is the fiber length. Figure 5 shows the resulting

alternans amplitude spatial profiles for the same values of xr as used in Figs. 1-4. These

profiles are very similar to those obtained from the simulations (and exp?) in terms of the

gradient and the node placement.

The position x0 of the node (where the APD is constant from beat to beat) is found by

setting a(x0) = 0, which gives,

x0 =
L

π
cos−1

[
1

1− (π2ξ2)/(γL2)
cos

πxr

L

]
. (7)

The curve x0 versus xr therefore has a point symmetry about the center of the cable. For

ξ = 0 (negligible diffusive coupling), this curve is just a straight line, meaning that the

node and the recording site coincide. For finite coupling, however, a node only forms when

xmin
r ≤ xr ≤ xmax

r where

xmin
r =

L

π
cos−1

[
1− π2ξ2

γL2

]
(8)

and by symmetry

xmax
r = L− xmin

r . (9)

The node position varies continuously from 0 to L as xr varies from xmin
r to xmax

r . For xr

smaller than xmin
r or larger than xmax

r , there is no node; the amplitude of alternans is reduced
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FIG. 5: Alternans amplitude (∆APD) profiles with off-site control applied at at locations xr = 0.0,

0.4 0.8, 1.2, 1.6, and 2.0 cm (indicated by arrows). Theoretical profiles (solid, black lines) are

computed from Eqn. x with a(L)/2 = 70.7 ms and compared to profiles from the coupled maps

simulations (dashed, blue lines) with BCL = 180 cm (as in Fig. x). ***Add some exp data if

available***

by control but does not vanish — exactly what we see in our simulations. Further, this result

show that the deviation between the recording site and the node position is dependant upon

electrotonic effects.

Figure 6(a) shows plots of the node position for different values of the feedback gain

parameter γ. Interestingly, decreasing the feedback gain increases 1/[1− (π2ξ2)/(γL2)], and

hence increases the departure from a straight line. The same phenomenon is observed in

our simulations [Fig. 6(b)].

IV. DISCUSSION

Previous studies have suggested that elimination of repolarization alternans in spatially

distributed systems using a common measuring/stimulus site is not possible over very large

distances [3, 5]. Here, we use different measuring and stimulus sites to show that alternans

may be controlled at specific desired locations which can be far away from the stimulus site.

9



0 0.4 0.8  1.2 1.6 2
0

0.4

0.8

  

1.2

1.6

2

x
r
 (cm)

x 0 (
cm

)

0.8
0.5
0.3
0.1

0 0.4 0.8   1.2 1.6 2
0

0.4

0.8

  

1.2

1.6

2

x
r
 (cm)

x 0 (
cm

)

0.8
0.5
0.3
0.1

FIG. 6: Dependence of node position for off-site control on the feedback gain, γ/2. Analytical

results (Eqn. x; solid lines) and simulation results (symbols and dashed lines) obtained for γ/2 =

0.8 (blue), 0.5 (black), 0.3 (red), and 0.1 (magenta).

Such node placement not only robustly manifests over a large range of values of the feedback

gain, but actually depends predictively on the gain.

The spatial alternans magnitude profile is well described by a theoretically described

amplitude equation, which also predicts quantitatively the node placement. These findings

thus further confirms the wave nature of alternans.

Although off-site control does not typically eliminate alternans everywhere along the

fiber, it may still be potentially important for antiarrhythmic strategies. First, because it is

a step towards multiple-electrode control. And second, because APD alternans amplitude

varies spatially across the ventricles (with typically larger amplitude at the base than at the
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apex). Hence, control may be most antiarrhythmic by modifying the pacing period from the

measurement of APD where its amplitude is largest in the absence of control.
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