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Overview
 Introduction: Nonlinear dynamics: what is it; why is it 

needed?
 Electrical restitution theory
 Eigenmode analysis
 Perturbation analysis
 “Magic numbers”
 Conclusions



1. Introduction

 Opinion: There are at least two required 
components in the 3-D Modeling of the heart
 Effects due to the anatomy and geometry of the 

heart
 Effects due to nonlinear dynamics

 This talk will concentrate on nonlinear dynamical 
effects.



Nonlinear dynamics
 What is it?

 Nonlinear dynamical systems are systems whose 
behavior is governed by rules that specify how future 
states of the system depend on previous states.

 Simple cases:
dx/dt = f(x(t))

or
xn+1 = f(xn)



Nonlinear dynamics
 You can often understand a system like the following 

without using nonlinear dynamics:
A         B        C       D

 Nonlinear dynamics helps us to understand this kind 
of system:

A         B        C       D

 And is even more useful for
understanding this kind of system:

A
B
C
D



Nonlinear dynamics
 Examples from cardiac action potential propagation: 

 Nonlinear dynamics not so important for wave 
propagation during sinus rhythm:

 Nonlinear dynamics is often important for reentrant 
waves:

Sinus 
node Atria AV node Purkinje 

system Ventricles

Spatial pattern of 
wavefronts

Spatial pattern of 
repolarization



Nonlinear dynamics

 For example consider the 
following simulation:

Top: membrane potential
Bottom: Last diastolic interval

Compare the left half of the 
simulation to the right half.



2. Electrical restitution theory
 Nonlinear dynamics of constant pacing provides some 

clues.
 Theory of electrical restitution relates APD (action 

potential duration) and DI (diastolic interval):

time

Membrane
potential

V

APDn DIn APDn+1

APD = action potential duration
DI = diastolic interval
BCL = basic cycle length

BCL

action potentials



Simple model, valid to zero order:

APDn+1 = APD(DIn) -> “Restitution function”
DIn+1 = BCL - APDn+1

Nonlinear 
dynamical system



 Not all reentrant wave patterns are the same:

 Different types of patterns will likely require 
different therapies to stop or prevent.

 What causes these differences?



Electrical restitution
 Electrical restitution dynamics suggests one 

mechanism by which wave breakup can occur:

Decrease
in APD following

short DIs

Head-tail
interaction

Steep slope
in the restitution 
function

Alternation
in successive
APDs (called 
“alternans”)

Large enough
alternations NO action potential Wave breakup

Positively sloped 
APD vs. DI 

restitution function



3. Eigenmode analysis 
 Actually, APD is not a strict function of DI.  When this 

is taken into account,  behavior other than alternans is 
simultaneously present.  What to do?

Vm

IKr



Eigenmode analysis

Anatomy of the 
alternans eigenmode 
in a single cell:



The eigenmode method
 Step #1: Determine the steady state

 Let the system settle down to steady state 
behavior, or use a secant method to solve the 
steady state equations.



 Step #2: Construct a 
linear map M relating 
the perturbations of 
successive cycles:

where T is pacing period.

Method

 

δx(T) = M ⋅ δx(0)



Method

 Step #3: Find the 
eigenmodes of 
the mapping as 
functions of 
time, i.e., find 
vectors v such 
that,

for some 
constant λ.

 

M ⋅ v = λv



 Two types of 
eigenmodes 
are common: 
model: (1) an 
alternans 
mode, and (2) 
a “memory” 
mode:

Alternans eigenmode:

Memory eigenmode:



The eigenmodes reveal the 
underlying mechanisms



Eigenmode analysis
 For the Fox et al. ion channel model of canine 

ventricular myocyte:



Experimental observation of an eigenmode 
(R. Gilmour, Jr.)

 Patch 
clamp 
experiment 
(action 
potential 
clamp)

 IKr current 
component 
of the 
alternans 
eigenmode

Experiment Eigenmode analysis



Left eigenmodes used to develop alternans
control algorithms

 Eigenmode theory also yields so-called 
“left eigenmodes” w:

 Left eigenmodes helped determine: (1) 
the best time to apply the stimulus, (2) 
the stimulus amplitude required.

 Charge required to neutralize 
the alternans mode when 
applied at different times 
during the action potential:

 

w ⋅ M = λw



Control algorithm
 Left eigenmode theory can be used to design 

alternans control algorithms.
 Control current applied is proportional to the 

previously measured value of (V1-V2):



Effect of the control algorithm
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Eigenmode analysis of spiral waves
 Eigenmode analysis is also applicable to finite-sized systems 

containing waves:
 Membrane potential amplitudes (top) and phases 

(bottom) for 4 different eigenmodes:



Eigenmode analysis
 Again, control of alternans on a spiral wave can be 

effected using left eigenmode theory:
No control Control using a single stimulus

Note how the action potential itself propagates the effect 
of single point stimulus to the entire system.



Eigenmodes: Summary
 Eigenmode methods are useful for:

 Diagnosing the mechanism responsible for dangerous 
cardiac action potential morphology patterns such as 
APD alternans,

 Designing cardiac rhythm control algorithms in single 
cells and small preparations, and

 Studying the stability of rotating action potential waves 
in the heart

 Limitations:
 Technically valid only for small departures from steady 

state!  But from a practical point of view, still provides 
valuable insight.

 System geometry modifies the behavior predicted by 
eigenmode theory.



3. Perturbation analysis
 What happens when we add a small perturbation to a 

propagating action potential?
 Uses:

 Reveals something about the underlying dynamics
 Shows the effective range control stimuli applied at a 

point.
 For spatially one-dimensional systems, e.g., fibers and 

rings, most easily studied by analyzing time vs. space 
diagrams.



Example of a time vs. space diagram

Action potential 
(orange)

Diastolic interval
(blue)

wavefront

waveback

Distance along fiber

APD

DI

Steeper slope = slower 
speed 

Flatter slope = 
faster speed

Conduction block

time



Membrane 
potential plot 

(yellow = action 
potential)

Membrane 
potential 

difference plot 
(perturbed -

unperturbed)

White parabola:
How 

perturbation 
would spread if 

just diffusive

Time and location of point perturbation



 Long stimulus cycle length (215 ms). No alternans.  
Perturbation stays within the parabola alternates, and 
decays with time.



 Shorter stimulus cycle length (205 ms) produces small amplitude 
concordant alternans (left).  Perturbation has two components 
(right).  The component within the parabola decays only slightly with 
time.  There is also a component downstream (i.e., to the left), 
induced by  conduction velocity (CV) modifications in the parabolic 
region, and amplified by beat-to-beat dynamics.



 Cycle length of 195 ms produces discordant alternans 
(left).  The downstream disturbance is now much 
more prominent.



 Close-up of how downstream propagation of the 
perturbation occurs:

1. Longer-
than-average 
APD

2. Shorter-than-
average DI

3. Slower-than 
average propagation 
speed

4. Delayed 
repolarization

5. Amplification of alternans 
by the local dynamics



 Even shorter cycle length (185 ms) yields  stronger 
discordant alternans (left).   Perturbations now tend to 
localize in the nodes of the discordant alternans 
pattern. 



 A clearer example of the congregation of the 
effects of perturbations in the nodes of the 
discordant alternans pattern. Note: no effect 
propagated upstream.  (cycle length = 185 ms, 
larger system, different stimulus location)



 Applying a random perturbation at all locations 
at a single time again ultimately yields a similar 
pattern, with maximum effect in nodes:



Perturbation analysis: Summary
 Provides some idea of how large a region of tissue can 

be controlled by a control stimulus applied to a single 
location.
 Local dynamics (e.g., alternans) is seen in the vicinity of 

the applied perturbation
 Also, the entire downstream region is affected by the 

perturbation, suggesting global control may be possible.
 However, effects of the perturbation tend to be 

concentrated in the nodes of the discordant alternans 
pattern, whereas we would like to have effects 
localized between nodes (i.e., where the alternation is 
occurring).



4. “Magic numbers” theory
 “Magic numbers”: a small number of 

irregularly spaced stimuli of that either cause 
or terminate fibrillation.

 So-called, because a simple dynamical model 
used to determine when conduction block at 
some distance from the stimulus site has 
been remarkably effective in when VF will be 
induced.

 Assumption: block at-a-distance does not 
occur across the entire wavefront uniformly, 
allowing some portion of the wave to continue, 
and subsequently reenter.



Example: block-at-a-distance 
causes reentry



Approach
 Assume that conduction block occurs when a 

wavefront runs into the back of the wave in 
front of it.

 This occurs when the velocity of the wavefront 
just before it crashes is higher than the velocity 
of the waveback it is pursuing.

 Assume simple conduction velocity and APD 
restitution functions (APD=a(DI), CV = v(DI)) 
to do the dynamics.

 Use time vs. space diagrams to help with 
visualization of the situation.



How block occurs
tim

e

distance

tim
e

distance

Block occurs when a wavefront runs 
into the slower moving waveback of 
the previous wave:

Block

Slower waveback
Faster wavefront

The slower waveback is 
created by a positive spatial 
gradient in the APD:

APD
Longer
APD



How block occurs
tim

e

distance

tim
e

distance

A positive APD gradient is derived from 
a positive DI gradient through the APD 
restitution function

The DI gradient comes from the 
difference in wavefront and 
waveback velocities, and so on:

APD

Longer
APD

DI Longer DI
DI Longer DI



How block occurs
These 4 relationships may be translated into 4 equations:

Block occurs when a wavefront 
is faster than the preceding 
waveback

Waveback velocity is slowed 
relative to wavefront velocity by a 
positive APD gradient

Positive APD gradient is 
produced by a positive gradient 
in the preceding DI

Positive DI gradient occurs when 
the wavefront velocity is slower 
than the preceding waveback

1/v(DImin) - 1/vwaveback > 0

1/vwaveback = 1/v(DI) + dAPD/dx

dAPD/dx = a’(DI)(dDI/dx)

dDI/dx = 1/v(DI) - 1/vprevious_waveback



How block occurs
These 4 equations may be substituted repeatedly 
into one another to yield a condition for block for any 
given number of premature stimuli.
For example, for 4 premature stimuli, we obtain:

Note that the gradients in APD and DI are initiated by 
differences in consecutive velocities (in red) and amplified by 
the steep slope in the APD restitution function (in green) when 
present.



How block can occur

Short DI

Long DI

Short DI

Short DI



In vivo experiments
 Affected German shepherds were instrumented with 

catheters inserted into the right and left ventricles.
 A pacedown protocol was performed to determined 

the APD restitution function for each ventricle.
 Each restitution function was substituted into the 

block formula just derived to generated series of 4 
premature pacing intervals predicted to produce 
block.

 These pacing intervals, and also intervals predicted 
not to produce block, were applied to the 
corresponding ventricle, to see if it would initiate 
ventricular fibrillation (VF).



Right ventricle results

S2 - ERP = 1 ms “short”
S3 - ERP =  19 ms “long”
S4 - ERP = 1 ms “short”
S5 - ERP:          always short

Short
Long
Short
Short
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Short
Long
Long
Short

No VF
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Experimental Results



S

In vivo experiment



Left ventricle results

S2 - ERP = 0 ms “short”
S3 - ERP = 51 ms “long”
S4 - ERP = 49 ms “long”
S5 - ERP:         always short

Short
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Effect of walls
Propagation of waveback to 
right—towards wall

Propagation of waveback 
to right—no wall

Propagation of waveback to 
left—away from wall

Propagation of waveback 
to left—no wall



Effect of walls



Effect of walls



“Magic numbers”: summary
 A new dynamical theory has been developed that 

predicts when a series of premature stimuli will result 
in conduction block.

 Block is most likely to occur when differences in the 
conduction velocities of successive wavefronts are 
amplified by steep APD restitution.

 Steep APD restitution is greatly facilitates, but is not 
necessary, for block to occur.

 Preliminary experiments show a correlation between 
patterns of premature stimuli that theory says will 
produce block and the induction of VF.

 Geometric features, such as a wall, can modify the 
dynamics.



Conclusions

 Nonlinear dynamics can help us to understand 
systems that, when approached logically, lead to 
circular reasoning.

 Eigenmode methods can help to 
 Identify the physiological mechanism(s) underlying 

APD alternans, a possible precursor for VF
 Suggest algorithms for their control



Conclusions

 Perturbation methods can determine the extent 
and localization of the influence of applied 
stimuli.

 Nonlinear dynamical analysis shows that certain 
combinations of stimuli can cause block-at-
distance.  These combinations tend to induce VF 
in in vivo experiments in canine hearts.

 Both dynamics and geometry are required for 
modeling of action potentials in the 3D heart.
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