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1. Introduction

Opinion: There are at least two required
components in the 3-D Modeling of the heart

Effects due to the anatomy and geometry of the
heart

Effects due to nonlinear dynamics

This talk will concentrate on nonlinear dynamical
effects.




Nonlinear dynamics

What is it?

Nonlinear dynamical systems are systems whose
behavior is governed by rules that specity how future
states of the system depend on previous states.

Simple cases:
dx/dt = f(x(t))
or

X1’1+1 = f(xn)




Nonlinear dynamics

You can often understand a system like the following
without using nonlinear dynamics:

A—>»B—>C—D

Nonlinear dynamics helps us to understand this kind
of system:

P'f‘—PB—bc—}DI

And is even more useful for

understanding this kind of system:




Nonlinear dynamics

Examples from cardiac action potential propagation:

Nonlinear dynamics not so important for wave
propagation during sinus rhythm:

Sinus Purkinje

— Atria —» AV node — — Ventricles

node system

Nonlinear dynamics is often important for reentrant
waves:

Spatial pattern of s Spatial pattern of
wavefronts repolarization
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* For example consider the
following simulation:

Top: membrane potential
Bottom: Last diastolic interval

Compare the left half of the
simulation to the right half.
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lectrical restitutio theory

Nonlinear dynamics of constant pacing provides some
clues.

Theory of relates APD (action
potential duration) and DI (diastolic interval):

action potentials
Membrane , / P

N

potential
Vv

APD = action potential duration
DI = diastolic interval

BCL = basic cycle length k_
APD, | DI
+— BCL—




APD, ., = APD(DI,) -> “Restitution function” . Nonlinear
DI ., =BCL - APD,,_; dynamical system

4APD 41
APD141 = APD{DIn}

APD+DI = BCL
v
- Dln




Tirne = DU0S0000 Time = 0U0S0000

Diftferent types of patterns will likely require
different therapies to stop or prevent.

What causes these differences?
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Electrical restitution dynamics suggests one
mechanism by which wave breakup can occur:

Head-talil
interaction

Decrease
in APD following
short Dls

Positively sloped
APD vs. DI
restitution function

Alternation

Steep slope
in the restitution

function

in successive
APDs (called
“alternans”)

Large
enough
alternations

NO action potential

Wave breakup




-analysis

Actually, APD is not a strict funct1on of DI. When
this is taken into account, behavior other than
alternans is simultaneously present. What to do?

Viewing Viewing Viewing Viewing
time #1 hme #2 time #3 time #4
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- Steady State
===: Alternans

Anatomy of the
alternans eigenmode
in a single cell:
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“eigenmode metHod——

Step #1: Determine the steady state

T T T T
‘ \ ‘ ‘ ‘ Stimulus

Action Potential

m Let the system settle down to steady state
behavior, or use a secant method to solve the
steady state equations.




fl\/l e t h O d Perturbed State

Step #2: Construct a Steady State
linear map M relating S
the perturbations of
successive cycles:

[ AF(TY [ A
Xx(T)=M- x(0) b (T) A (D)
AR(T ) Aha(0)
where T is pacing period. L5(T) | &0
A (T) Ad(D)
AT £(0)
AXI(T) Ax1(0)
A ca™,(T) N, (0)

Perturbation Irutial Perturbation
after a cycle
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Step #3: Find the
eigenmodes of
the mapping as
functions of
time, i.e., find
vectors v such
that,

constant A .




Alternans elgenmode

BR Model, BCL=275ms, Perturbation in 1st eigenvector showing atternans

Two types of ' ' ' | T
eigenmodes N
are Common:
model: (1) an =
alternans '
mode, and (2)

a “memory” Memory eigenmode:

]
mO de ° BR model, BCL=275ms, Perturbation in 2nd eigenvector showing memory effect
T T T T T

I 1
— Perturbed
— Steady state

¥ apd95=242.07ms apd95=222.49ms _ apd95=216 53ms apd95=212.84ms _ apd95=213.06ms |
| | | | | |

0 400 600 800 1000 1200 1400
t(ms)







W Forthe Fox et al. ion channel model of Eéinme
Ventricular myocyte:
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m Patch
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Experiment Eigenmode analysis
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s Eigenmode theory also yields so-called
“left eigenmodes” w:

Left eigenmodes helped determine: (1)
the best time to apply the stimulus, (2)
the stimulus amplitude required.

Charge required to neutralize
the alternans mode when
applied at different times

during the action potential:
100 150 170

Time(ms)




s Left eigenmode theory can be used to design

alternans control algorithms.

s Control current applied is proportional to the
previously measured value of (V4-V,):
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* Eigenmode analysis is also applicable to finite-sized systems
containing waves:

* Membrane potential amplitudes (top) and phases
(bottom) for 4 different eigenmodes:




* Again, control of alternans on a spiral wave can be
effected using left eigenmode theory:

No control Control using a single stimulus

time: 2.0 ms
0.02 rojations

Note how the action potential itself propagates the effect
of single point stimulus to the entire system.




Eigenmode methods are useful for:

Diagnosing the mechanism responsible for dangerous
cardiac action potential morphology patterns such as
APD alternans,

Designing cardiac rhythm control algorithms in single
cells and small preparations, and

Studying the stability of rotating action potential waves
in the heart

Limitations:

Technically valid only for small departures from steady
state! But from a practical point of view, still provides
valuable insight.

System geometry modifies the behavior predicted by
eigenmode theory.




3. Perturbation analysis

What happens when we add a small perturbation to a
propagating action potential?
Uses:

Reveals something about the underlying dynamics

Shows the effective range control stimuli applied at a
point.

For spatially one-dimensional systems, e.g., fibers and
rings, most easily studied by analyzing time vs. space
diagrams.




Flatter slope =
Steeper slope = slower faster speed

speed .

time /

Diastolic interval <«— Wwaveback

(blue)

Action potential <«— Wwavefront
(orange)

1  Distance along fiber ——»
Stimuli applied here
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Leng stimulus cycle lengt
Perturbation stays within the parabola alternates, and
decays with time.
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e length'(205 ms) produces small amplit

(rlght). The component within the parabola decays only slightly
with time. There is also a component downstream (i.e., to the left),
induced by conduction velocity (CV) modifications in the parabolic
region, and amplified by beat-to-beat dynamics.

% 1|:|+ 1cl: Membrane potential {mi)
LS T

tirne {ms}
tirne {ms}




1 s produces discordant altern
Teft). " The downstream disturbance is now muc
more prominent.
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* Close-up of how downstream propagation of the

-~ 5. Amplification of alternans
‘ by the local dynamics

T

"4’ Delayed
repolarization - 2. Shorter-than-

L ' / average DI

3. Slower-than 1. Longer-

average propagation N than-average
speed APD




to localize in the nodes of the discordant alternans
pattern.

tirne {msd




effects of perturbatlons in the nodes of the

discordant alternans pattern. Note: no effect
propagated upstream. (cycle length =185 ms,
larger system, different stimulus location)
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Applying a Tandompe ' s

at a single time again ultimately yields a similar
pattern, with maximum effect in nodes:
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"Perturbation analysis: Summary

Provides some idea of how large a region of tissue can
be controlled by a control stimulus applied to a single
location.

Local dynamics (e.g., alternans) is seen in the vicinity of
the applied perturbation

Also, the entire downstream region is affected by the
perturbation, suggesting global control may be
possible.

However, effects of the perturbation tend to be
concentrated in the nodes of the discordant alternans
pattern, whereas we would like to have effects
localized between nodes (i.e., where the alternation is
occurring).




“Magic numbers”: a small number of irregularly
spaced stimuli of that either cause or terminate
fibrillation.

So-called, because a simple dynamical model used
to determine when conduction block at some
distance from the stimulus site has been
remarkably effective in when VF will be induced.

Assumption: block at-a-distance does not occur
across the entire wavefront uniformly, allowing
some portion of the wave to continue, and
subsequently reenter.




time =1340 ms time = 1450 ms time = 1470 ms
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time = 1560 ms




Assume that conduction block occurs when a
wavefront runs into the back of the wave in
front of it.

This occurs when the velocity of the wavefront
just before it crashes is higher than the velocity
of the waveback it is pursuing.

Assume simple conduction velocity and APD
restitution functions (APD=a(DI), CV = v(DI))
to do the dynamics.

Use time vs. space diagrams to help with
visualization of the situation.




Block occurs when a wavefront runs The slower waveback is
into the slower moving waveback of created by a positive spatial

the previous wave: gradient in the APD:
A

distance distance




The DI gradient comes from the
from a positive DI gradient through the difference in wavefront and
APD restitution function waveback velocities, and so on:

A A

(
0 Longer L

distance distance




" These 4 relationships may be translated into 4 equations:

Block occurs when a wavefront
Is faster than the preceding
waveback

1/v(DI . ) - 1/v

min) waveback

>0

Waveback velocity is slowed
relative to wavefront velocity by a
positive APD gradient

1/v = 1/v(Dl) +

waveback —

dAPD/dx

Positive APD gradient is
produced by a positive gradient
in the preceding DI

dAPD/dx = dDI/dx)

Positive DI gradient occurs when
the wavefront velocity is slower
than the preceding waveback

dDl/dx = 1/v(DI) - 1/v

previous_waveback
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These 4 equations may be substituted repeatedly
iInto one another to yield a condition for block for any

given number of premature stimuli.
For example, for 4 premature stimuli, we obtain:

V back

oL L L o) ——-——
‘ v {-Dllﬂiﬂ-} _F {DI‘H) "'?{-D I min) .1"? (D I 53-} F(D I 54 }

r

+ {Ir(DI .. }H'{DI q) .. - - ar(DI..__ }ar(DI }ff'{DI 2 } ) - => 0
A Dlgy)a (Dl ( v(DI,,) 1.:{__1)153)] —————  \vDly) v(Dly)

Note that the gradients in APD and DI are initiated by
differences in consecutive velocities (in ) and amplified by
the steep slope in the APD restitution function (in ) when

present.




Short DI
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Long DI

Short DI
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In vivo expeniients—

m Affected German shepherds were instrumented with
catheters inserted into the right and left ventricles.

m A pacedown protocol was performed to determined
the APD restitution function for each ventricle.

m Each restitution function was substituted into the
block formula just derived to generated series of 4

premature pacing intervals predicted to produce
block.

m These pacing intervals, and also intervals predicted
not to produce block, were applied to the
corresponding ventricle, to see if it would 1nitiate
ventricular fibrillation (VF).




entricleresults

APD restitution function

200

S2-ERP=1ms “short”
S3-ERP = 19 ms “long”
S4-ERP=1ms “short”
S5 - ERP: always short

——

Pacmg intervals that are
predicted to

produce block:

Experimental Results

Short
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Pacmg mtervals that are
nredicted to produce block:

DI (ms) 200

Experimental Results

S2-ERP=0ms “short” Short Short
S3 - ERP =51 ms “long” Long Long
S4 - ERP =49 ms “long” Short Long
S5 - ERP: always short Short Short

! !

No VF VF




Propagation of waveback
to right—no wall
\

time

space

Propagation of waveback
to left—no wall

time

Propagation of waveback to
right—towards wall
A

time
‘

space

Propagation of waveback to
left—away from wall

time
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A new dynamical theory has been developed that
predicts when a series of premature stimuli will result
in conduction block.

Block is most likely to occur when differences in the
conduction velocities of successive wavefronts are
amplified by steep APD restitution.

Steep APD restitution is greatly facilitates, but is not
necessary, for block to occur.

Preliminary experiments show a correlation between
patterns of premature stimuli that theory says will
produce block and the induction of VF.

Geometric features, such as a wall, can modify the
dynamics.




Conclusions

Nonlinear dynamics can help us to understand
systems that, when approached logically, lead to
circular reasoning.

Eigenmode methods can help to

Identify the physiological mechanism(s) underlying
APD alternans, a possible precursor for VF

Suggest algorithms for their control




Perturbation methods can determine the extent
and localization of the influence of applied
stimuli.

Nonlinear dynamical analysis shows that certain
combinations of stimuli can cause block-at-
distance. These combinations tend to induce VF
in in vivo experiments in canine hearts.

Both dynamics and geometry are required for
modeling of action potentials in the 3D heart.
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