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1. Introduction

Opinion: There are at least two required
components in the 3-D Modeling of the heart

Effects due to the anatomy and geometry of the
heart

Effects due to nonlinear dynamics

This talk will concentrate on nonlinear dynamical
effects.




Nonlinear dynamics

What is it?
Nonlinear dynamical systems are systems whose

behavior is governed by rules that specify how future
states of the system depend on previous states.

Simple cases:
dx/dt = f(x(t))

or

X1’1+1 = f(xn)




Nonlinear dynamics

You can often understand a system like the following
without using nonlinear dynamics:

A—B—>C—D

Nonlinear dynamics helps us to understand this kind
of system:

P'Tx‘—PB—>C—>DI

And is even more useful for >

understanding this kind of system:

'Uncu:>'




Nonlinear dynamics

Examples from cardiac action potential propagation:

Nonlinear dynamics not so important for wave
propagation during sinus rhythm:

Sinus . Purkinje :
— Atria — AV node — )y Ventricles
node system
Nonlinear dynamics is often important for reentrant
waves:
Spatial pattern of — Spatial pattern of
wavefronts repolarization
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~Nonlinear dynamics

* For example consider the
following simulation:

Top: membrane potential
Bottom: Last diastolic interval

Compare the left half of the
simulation to the right half.

Ilernberare potentsd at time = 0000000
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2. Electrical restitution theory

* Nonlinear dynamics of constant pacing provides some
clues.

* Theory of relates APD (action
potential duration) and DI (diastolic interval):

action potentials
Membrane , / P

potential N\
V

APD = action potential duration .
DI = diastolic interval >
BCL = basic cycle length ..J \\_-) &

ArD, | DI, | APD ),

«— BCL—




Simple model, valid to zero order:

APD, ., = APD(DI,) -> “Restitution function” . Nonlinear
DIl ., = BCL - APD,,, dynamical system

AAPD 41
APDp41 = APD(DIR)

APD{

APD, ,—APD+DI = BCL

> DIy,




® Not all reentrant wave patterns-are the same:—"

Time = 000000 Time = 000000

* Different types of patterns will likely require
different therapies to stop or prevent.

* What causes these differences?




Electrical restitution

e Electrical restitution dynamics suggests one
mechanism by which wave breakup can occur:

ead-tal Decrease Positively sloped
| fa } f." _ | inAPD following | —, APD vs. D
e short DIs restitution function
S I Alternation

Steep slope in successive

in the restitution - APDs (called

function “alternans”)

Large enough : _
alternations — | NO action potential | —> | Wave breakup




3. Eigenmode analysis.

* Actually, APD is not a strict function of DI. When this
is taken into account, behavior other than alternans is
simultaneously present. What to do?

Viewing Viewing Viewing Viewing
time #1 time #2 time #3 time #4
(a) Vector V
representation m
of a general

perturbation:

I Kr
(b) General
perturbation
decomponsed

into eigenmodes

(c) Behavior of
eigenmode t i | i ‘ ,..--_"" ]/

perturbation #1:

(d) Behavior of

eigenmode ' ""'-_-..., |
perturbation #2: h-r . >




Eigenmode analysis

Anatomy of the
alternans eigenmode
in a single cell:

- Steady State
===: Alternans



The eigenmode method ——

Step #1: Determine the steady state

T T T
‘ \ ‘ ‘ ‘ Stimulus

Action Potential

m Let the system settle down to steady state
behavior, or use a secant method to solve the
steady state equations.




Method l

Step #2: Construct a Steady State
linear map M relating .
the perturbations of
successive cycles:

ox(T) =M - ox(0)

where T is pacing period. MTY | O

A ()

A7 (0)

ar Iy

Py
Ax1(0)
A CEH] ()

Perturbation Initial Perturbation
after a cycle




Method

Step #3: Find the
eigenmodes of
the mapping as
functions of
time, i.e., find
vectors v such
that,

for some
constant A.




Alternans eigenmode:

BR Model, BCL=275ms, Perturbation in 1st eigenvector showing atternans

Two types of
eigenmodes
are Common:
model: (1) an _
alternans - -
mode, and (2)
a “memory”

[
mOde . BR model, BCL=275ms, Perturbation in 2nd eigenvector showing memory effect

I
— Penurbed
— Steady state

apd95=242 07ms apd95=22249ms apd95=21653ms apd95=21284ms apd9d5=213.06ms

1200
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The eigenmodes reveal the
underlying mechanisms

The alternans eigenmode Memory effect eigenmode




Eigenmode analysis

For the Fox et al. ion channel model of canine
ventricular myocyte:

» ( Beginning of the
action potential
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Experimental observation of an eigenmode
(R. Gilmour, Jr.) :

= Patch
clamp
experiment
(action
potential
clamp)

= | current
component
of the
alternans
eigenmode

—

K pApk)
e

Time(ms)

Experiment Eigenmode analysis




Left eigenmodes used to develop alternans
control algorithms

= Eigenmode theory also yields so-called
“left eigenmodes” w:

» Left eigenmodes helped determine: (1)
the best time to apply the stimulus, (2)
the stimulus amplitude required.

» Charge required to neutralize
the alternans mode when
applied at different times

during the action potential:
100 160 170

Time(ms)




Control algorithm —

= Left eigenmode theory can be used to design
alternans control algorithms.

= Control current applied is proportional to the
previously measured value of (V;-V,):
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Effect of the control algorithm-

- Controlled
—— Uncontroller
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Eigenmode analysis of spiral waves

* Eigenmode analysis is also applicable to finite-sized systems
containing waves:

* Membrane potential amplitudes (top) and phases
(bottom) for 4 different eigenmodes:




Eigenmode analysis —

* Again, control of alternans on a spiral wave can be
effected using left eigenmode theory:

No control Control using a single stimulus

[time: 2.0 ms
0.02 rotations

Note how the action potential itself propagates the effect
of single point stimulus to the entire system.




Eigenmodes: Summary

Eigenmode methods are useful for:

Diagnosing the mechanism responsible for dangerous
cardiac action potential morphology patterns such as
APD alternans,

Designing cardiac rhythm control algorithms in single
cells and small preparations, and

Studying the stability of rotating action potential waves
in the heart

Limitations:

Technically valid only for small departures from steady
state! But from a practical point of view, still provides
valuable insight.

System geometry modifies the behavior predicted by
eigenmode theory.




3. Perturbation analysis

What happens when we add a small perturbation to a
propagating action potential?
Uses:

Reveals something about the underlying dynamics

Shows the effective range control stimuli applied at a
point.

For spatially one-dimensional systems, e.g., fibers and
rings, most easily studied by analyzing time vs. space
diagrams.
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* Long stimulus cycle length (215-ms). No alternans.

~~ Perturbation stays within the parabola alternates, and

decays with time.
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» Shorter stimulus cycle length (205 ms) produces small amplitude
concordant alternans (left). Pertur ents
(right). The component within the parabola decays only slightly with
time. There is also a component downstream (i.e., to the left),
induced by conduction velocity (CV) modifications in the parabolic
region, and amplified by beat-to-beat dynamics.

w :4 1d: Membrane potential ()



* Cycle length of 195 ms produces discordant alterna
- —(left). The downstream disturbance is now muc

i more prominent.

1d: Membrane potential {m

time {rms
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* Close-up of how downstream propagation of the
Perturbation occurs:

5. Amplification of alternans
™4« _ by the local dynamics

g

T

4’ Delayed
repolarization " - 2. Shorter-than-
' » 4 average DI

3. SIower—tI\an

average propagation I than-average
Speed APD

1. Longer-




» Even shorter cycle length (185 ms) yields stronger
discordant alternans (left). Perturbations now tend to
localize in the nodes of the discordant alternans
pattern.

/

>

1d: Membrane potential {m')




* A clearer example of the congregation F)@Jf(

_——effects of perturbations in the nodes of the
discordant alternans pattern. Note: no effect
propagated upstream. (cycle length =185 ms,
larger system, different stimulus location)

1d: Membrane potential {mh) % |:|+ 1d: Membrane potential {m




» Applying a random perturbation atall loeations
~~ atasingle time again ultimately yields a similar
pattern, with maximum effect in nodes:

1dd: Membrane potential (')

4
# 10




Perturbation analysis: Summary

Provides some idea of how large a region of tissue can
be controlled by a control stimulus applied to a single
location.

Local dynamics (e.g., alternans) is seen in the vicinity of
the applied perturbation

Also, the entire downstream region is affected by the
perturbation, suggesting global control may be possible.

However, effects of the perturbation tend to be
concentrated in the nodes of the discordant alternans
pattern, whereas we would like to have effects
localized between nodes (i.e., where the alternation is
occurring).




4. “Magic numbers” theory

“*Magic numbers”: a small number of
Irregularly spaced stimuli of that either cause
or terminate fibrillation.

So-called, because a simple dynamical model
used to determine when conduction block at
some distance from the stimulus site has
been remarkably effective in when VF will be
Induced.

Assumption: block at-a-distance does not
occur across the entire wavefront uniformly,
allowing some portion of the wave to continue,
and subsequently reenter.




Example: block-at-a-distance
causes reentry

'

time = 1500 ms time=1530ms time = 1560 ms




Approach —

Assume that conduction block occurs when a
wavefront runs into the back of the wave in
front of it.

This occurs when the velocity of the wavefront
just before it crashes is higher than the velocity
of the waveback it is pursuing.

Assume simple conduction velocity and APD
restitution functions (APD=a(DI), CV = v(DI))
to do the dynamics.

Use time vs. space diagrams to help with
visualization of the situation.




How block occurs .

/
Block occurs when a wavefront runs The slower waveback is
into the slower moving waveback of created by a positive spatial
the previous wave: gradient in the APD:
A A

time
time

distance distance




How block occurs - —

ﬂositive APD gradient is derived from The DI gradient comes from the
a positive DI gradient through the APD difference in wavefront and
restitution function waveback velocities, and so on:

A A

~

time
time

#51% Longer ol

distance distance




How block occurs S

These 4 relationships may be translated into 4 equations:

Block occurs when a wavefront
is faster than the preceding IN(DI i) - IV avenack = O
waveback

Waveback velocity is slowed
relative to wavefront velocity by a AN yaveback = 1/V(DI) + dAPD/dx
positive APD gradient

Positive APD gradient is
produced by a positive gradient dAPD/dx = a’(DI)§|dDI/dx)
in the preceding DI

Positive DI gradient occurs when
the wavefront velocity is slower dDl/dx = 1/v(DI) - 1iv

. previous_waveback
than the preceding waveback




How block occurs

These 4 equations may be substituted repeatedly
Into one another to yield a condition for block for any

given number of premature stimuli.
For example, for 4 premature stimuli, we obtain:

LI SR R S S 1Y ) L
' v(DI ;) _'l-"{._DI ss) v(DI ,LT(DISE_} v(DIg,)

min )

"

" back

1 R N SR | |
+a'(DI.)a' (DI - -a'(DI,,)a' (DI )a' (DI,)| — -— >
0 sal 53)(""’{1)151) 1"{:DI53)J w('ﬁ{_l)lﬂ) 1"'{.DI51)J

Note that the gradients in APD and DI are initiated by
differences in consecutive velocities (in ) and amplified by
the steep slope in the APD restitution function (in ) when

present.




How block can occur

Short DI

Short DI
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@
£
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Long DI

Short DI

100 200 300
Cell # (or x in units of 0.1 mm)




In vivo experiments

m Affected German shepherds were instrumented with
catheters inserted into the right and left ventricles.

m A pacedown protocol was performed to determined
the APD restitution function for each ventricle.

m Each restitution function was substituted into the
nlock formula just derived to generated series of 4

premature pacing intervals predicted to produce
nlock.

m These pacing intervals, and also intervals predicted
not to produce block, were applied to the
corresponding ventricle, to see If it would initiate
ventricular fibrillation (VF).




Right ventricle results

e | Pacing intervals that are
APD restitution function  predicted to produce block:
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Experimental Results

S2-ERP=1ms “short” Short Short
S3-ERP = 19ms “long” Long Long
S4-ERP=1ms “short” Short Long
S5 - ERP: always short Short Short
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VF No VF




In vivo experiment




Left ventricle results

=

Pacing intervals that are

APD restitution function oredicted to produce block:
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Experimental Results

S2-ERP=0ms  “short” Short Short
S3-ERP =51 ms “long” Long Wolgle
S4-ERP =49 ms “long” Short Long
S5 - ERP: always short Short Short
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No VF VF




Effect of walls

_—
Propagation of waveback Propagation of waveback to
to right—no wall right—towards wall
A A
time time
‘
space space

Propagation of waveback Propagation of waveback to
to left—no wall left—away from wall

time time

Space Space




Effect of walls —
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“Magic numbers™ summary

A new dynamical theory has been developed that
predicts when a series of premature stimuli will result
in conduction block.

Block is most likely to occur when differences in the
conduction velocities of successive wavefronts are
amplified by steep APD restitution.

Steep APD restitution is greatly facilitates, but is not
necessary, for block to occur.

Preliminary experiments show a correlation between
patterns of premature stimuli that theory says will
produce block and the induction of VF.

Geometric features, such as a wall, can modify the
dynamics.




Conclusions

Nonlinear dynamics can help us to understand
systems that, when approached logically, lead to
circular reasoning.

Eigenmode methods can help to

Identify the physiological mechanism(s) underlying
APD alternans, a possible precursor for VF

Suggest algorithms for their control




Conclusions

Perturbation methods can determine the extent
and localization of the influence of applied
stimuli.

Nonlinear dynamical analysis shows that certain
combinations of stimuli can cause block-at-
distance. These combinations tend to induce VF
in in vivo experiments in canine hearts.

Both dynamics and geometry are required for
modeling of action potentials in the 3D heart.
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