Imaging-Based Structural Models of the Myocardium

Edward Hsu, Ph.D.

Department of Bioengineering Small Animal Imaging Facility

Myocardial "Functional Anatomy"

Modeling versus "morphologically accurate" modeling

Tissue Microstructure Histology

Myocardial structures

Histology:

- "gold standard"
- destructive
- labor intensive
- prone to artifacts

Myocardial Structural Models /Atlases Key Challenges

- 1. Fiber Orientation Measurement:
 - alternative to histology
 - suitable for the mouse
- 2. Statistics:
 - inter-species variability
 - intra-species variability
 - atlas?

Imaging Based Alternatives

Requirements:

- noninvasive / nondestructive
- in vivo capable
- reasonable resolution
- intrinsic tissue contrast

MR Diffusion Imaging

Detection of Early Stroke

Diffusion is highly sensitive to tissue microstructure!

Diffusion in MRI

Conventional transport:

MRI:

- Random translational motion
- Diffusion in water versus diffusion of water

Diffusion in Anisotropic Tissues

examples:

- brain white matter
- myocardium
- cartilage ...

$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

MR diffusion tensor imaging (MR-DTI)

Overview

- Principles and Methods of DTI
- Engineering Challenges
- Applications of Cardiac DTI
- Myocardial Structural Models and Atlases

MR Diffusion Encoding

spin precession frequency

Beyond Isotropic Diffusion

Generalized Anisotropic Diffusion

Rotate G into local diffusion axes

 $\mathbf{g}^{\mathsf{T}} = \mathbf{R} \ \mathbf{g}$ $\mathsf{ADC} = \mathbf{g}^{\mathsf{T}} \cdot \mathbf{R}^{\mathsf{T}} \mathbf{D}_{\Lambda} \mathbf{R} \cdot \mathbf{g}$

 $\mathbf{D} = \mathbf{R}^{\mathsf{T}} \mathbf{D}_{\Lambda} \mathbf{R} = \begin{bmatrix} \mathbf{D}_{\mathsf{x}\mathsf{x}} \, \mathbf{D}_{\mathsf{x}\mathsf{y}} \, \mathbf{D}_{\mathsf{x}\mathsf{z}} \\ \mathbf{D}_{\mathsf{x}\mathsf{y}} \, \mathbf{D}_{\mathsf{y}\mathsf{y}} \, \mathbf{D}_{\mathsf{y}\mathsf{z}} \\ \mathbf{D}_{\mathsf{x}\mathsf{z}} \, \mathbf{D}_{\mathsf{y}\mathsf{z}} \, \mathbf{D}_{\mathsf{z}\mathsf{z}} \end{bmatrix}$

DTI strategy:

- use g to probe D
- encode in at least 6 non-colinear directions
- calculate **D**, then diagonalize

Tensor Diagonalization: Eigenvalues

diffusion along principal axes

 $D_1 \ge D_2 \ge D_3$

DTI: Scalar Anisotropy Index Contrast for tissue microstructure

"fractional anisotropy"

Tensor Diagonalization: Eigenvectors

primary eigenvector: a proxy for tissue fiber orientation

Validation in Cardiac DTI

Diffusion Tensor Eigenvector

Point-by-Point Comparison

Depth: +2.0 mm

Transmural Fiber Rotation

depth from epicardium (mm)

Is DTI Enough?

Assumption: Only One Diffusion Direction

1. Macroscopic merging or crossing fibers

2. Myocyte cellular branching

High-Angular Resolution Diffusion Imaging

- More diffusion encoding directions:
- Non-tensor-based diffusion fitting: "Q-ball", generalized tensors, etc.

Q-ball Imaging of the Myocardium

- Fixed canine heart
- Mid ventricular short axis
- 96 directions; b = 2000 s/mm²

Shi et al. ISMRM 2007

Trouble for DTI?

QBI vs DTI Myocardial Fiber Orientation Mapping

Fiber Helix Angle

90

60

30

0

-30

-60

-90

Difference

QBI vs DTI: Implications

- 1. Small macroscopic differences exist
- 2. Little impact on fiber orientation mapping
- 3. Neither can resolve cellular branching

Overview

- Principles and Methods of DTI
- Engineering Challenges
- Applications of Cardiac DTI
- Myocardial Structural Models and Atlases

DTI: Engineering Challenges

- diffusion encoding via signal attenuation
- large dataset size -- minimum 7 images
- low spatial & temporal resolution, low quality

128 x 128 single shot DW-EPI 1.0 - 2.0 mm resolution 2.0 mm or larger slice 3D (multislice) scan in ~ 10 min

Areas of Development:

- acquisition efficiency
- distortion correction
- data de-noising

Diffusion Tensor "Microscopy"?

human brain 2.0 mm 10 min

mouse brain/heart 100 μ m

Scan time $\propto (\frac{1}{Voxel})^2$

1200 YRS!!

Hardware Solutions for SNR

Factor	Change	Real Gain
Stronger magnet	2.3	2
Stronger gradient set	10	3.5
Smaller transceivers	10	10
Longer scans	200	14
Total		1000

Doable, but not practical

Reducing DTI Scan Time

full sampling (N lines) reduced encoding (N/2 lines)

Conventional DTI Strategy

Diffusion tensor computation and diagonalization

Reduced Encoding DTI Strategy

Diffusion tensor computation and diagonalization

Constrained Reconstruction Methods

Fiber Orientation Mapping Accuracy Fiber orientation angle vs "gold standard"

Keyhole[◊] N @ 50% RIGR N @ 50% $\Delta \alpha$ 90 60 Control N/2 full 30 \mathbf{O}

3D DTI: 256 x 128 x 128 matrix size 9 hr vs. 30 hr scan time

Hsu & Henriquez. J Cardiovasc Magn Reson. 3: 339, 2001

3D Myocardial Fiber Orientation Mapping

Image Registration

- Diffusion gradient direction dependent
- Causes: eddy-currents, field inhomogeneity, motion, etc
- DT estimation errors at borders
- Loss of fine structures

Registration of DW/DT Images

Challenges:

- 3D landmarks difficult
- No exact one-to-one intensity correlation

b0

Mutual Information Image Registration

Sub-pixel Interpolation

Mistry et al. Magn Reson Med. 56: 310, 2006

Mutual-Information Registration

12-dimensional search space: shift_x* shift_y* shift_z* scaling_x scaling_y scaling_z shear_yx* shear_yz* shear_yz* shear_zy* shear_zx*

*Fourier deformation

Overview

- Principles and Methods of DTI
- Engineering Challenges
- Applications of Cardiac DTI
- Myocardial Structural Models and Atlases

Post-Injury / Surgery Remodeling

Sheep hearts 2T, 256 x 128 x 128 acq 10 cm FOV Scan time: 9.1 hr

Walker et al. J. Thoracic Cardiov Surg. 129: 382, 2005

Regional Comparison

- No change after infarction!!
- Post-plication changes in adjacent regions

Cardiac Mechanics of LV Aneurysm

DTI-based FEM

Circumferential Strain

In Vivo Tagging

Walker et al. Am J Physiol. 289: H692, 2005

Myocardial Electrophysiology

Canine Ectopic Pacing Action Potential Wave Front

DT Microscopy of Mouse Hearts

dog heart

mouse 1.0 cm

9T, 100 μ m isotropic resolution 200,000+ measurement points

Jiang et al. Magn Reson Med. 52: 4453, 2004

LV Transmural Fiber Helix Angles

Courtesy: K. Pandya (UNC-CH)

Fiber Angle Mapping Accuracy: $\pm 5^{\circ}$

Mouse Heart Electrophysiology

transmembrane potential 5 ms post pacing

Collaborators: J. Tranquillo (Duke) C. Henriquez D. Weinstein (Utah) G. Kindleman

extracellular potential 5 ms post pacing

DTI and Tissue Engineering

"Biologically Inspired" 2D Heart Slice N. Bursac (Duke)

myocyte culture

fibronectin etch

fiber direction vectors

Myocardial Fiber Visualization DTI-based renderings of a rat LV

G. Gullberg, LBNL

In Vivo Cardiac DTI?

Possible, but . . .

Wu et al. Circulation. 114: 1036, 2006

Myocardial Sheet Structure

- Morphologically consistent
- Not fixation artifact
- Biophysical origin still unknown

Overview

- Principles and Methods of DTI
- Engineering Challenges
- Applications of Cardiac DTI
- Myocardial Structural Models and Atlases

Myocardial Structural Models /Atlases Key Challenges

- 1. Fiber Orientation Measurement:
 - alternative to histology
 - suitable for the mouse
- 2. Statistics:
 - inter-species variability
 - intra-species variability
 - atlas?

Myocardial Fiber Orientation: Inter-Species Variability

Species	Ν	Scanner	FOV	SNR
Sheep	5	2.0 T	10 cm	125
Rabbit	6	7.0 T	4.0 cm	102
Mouse	10	9.4 T	1.2 cm	95

3D DTI:

- normal, fixed in end-systole
- 128 x 128 x 128 matrix
- b0 + DWI in 12 optimized directions
- 9.1 hr acquisition

Myocardial Fiber Orientation: Inter-Species Variability

- subepicardial helix angle
- epi-to-endocardial range
- linearity

2-way ANOVA comparing across species and myocardial zones

	Species	Septal	Mid Free wall	Upper Free wall	Lower Free wall
Range	Mouse Rabbit Sheep	$\begin{array}{c} 69.0 \pm 17.8 \\ 44.0 \pm 11.3 \\ 38.0 \pm 9.92 \end{array}$	$\begin{array}{c} 68.9 \pm 17.4 \\ 48.9 \pm 10.5 \\ 54.5 \pm 7.27 \end{array}$	$75.3 \pm 17.1 \\ 47.6 \pm 11.7 \\ 54.4 \pm 10.8$	$72.4 \pm 22.4 \\ 39.4 \pm 9.70 \\ 51.7 \pm 10.7$
Subepicardial Helix Angle	Mouse Rabbit Sheep	-58.6 ± 9.53 -42.6 ± 14.9 -28.2 ± 19.2	-50.2 ± 14.7 -29.9 ± 14.6 -30.2 ± 8.74	-35.9 ± 14.6 -27.7 ± 11.4 -24.3 ± 9.64	$\begin{array}{l} -46.9 \pm 14.4 \\ -23.7 \pm 13.9 \\ -26.6 \pm 9.26 \end{array}$
Linearity	Mouse Rabbit Sheep	$\begin{array}{c} 0.98 \pm 0.011 \\ 0.93 \pm 0.14 \\ 0.91 \pm 0.070 \end{array}$	$\begin{array}{c} 0.99 \pm 0.011 \\ 0.94 \pm 0.038 \\ 0.95 \pm 0.044 \end{array}$	$\begin{array}{c} 0.97 \pm 0.025 \\ 0.94 \pm 0.050 \\ 0.95 \pm 0.055 \end{array}$	$\begin{array}{c} 0.98 \pm 0.017 \\ 0.97 \pm 0.028 \\ 0.94 \pm 0.052 \end{array}$

No significant zonal difference detected, but species-species differences are significant

	Range	Sub-epi $\alpha_{\rm H}$	Linearity
mouse-sheep	YES	YES	YES
mouse-rabbit	YES	YES	YES
rabbit-sheep	YES	YES	NO

Inter-Species Variability: Implications

1. Biomechanics:

- fewer myocyte in smaller hearts
- steeper transmural angle = higher torsion?

2. Myocardial modeling:

- cannot scale across species
- at least hearts of different sizes

Myocardial Fiber Orientation: Intra-Species Variability

Areas of Development:

- define anatomically-equivalent points
- quantitative comparison of tensor fields

Large Deformation Diffeomorphic Metric Mapping (LDDMM)

- infinite DOF
- invertible

Image Processing Pipeline

atlas

Statistics of Group Averages

averages scalar of quantities vs. tensor

pixel-wise vs. whole-heart comparison

Principal Component Analysis

- reduces 10,000s to (N-1) DOF
- scalar measurements
- whole-heart comparison

Group of 11 mouse hearts

Statistical Power: First Helix Angle Component

Mean ± SD of 20 sub-samples

Detection of Hypertrophic Hearts

Collaborators: K. Padya, O. Smithes

Ellipses include 95% of data with \pm 2SD in each dimension in 3D PCA space

Pixel-wise Comparison

Fiber Orientation Helix Angle

Group Mean

Difference

Significance

Whole-heart comparison can be advantageous

Conclusions

- Alternative to histology found
- Inter-species differences significant
- Intra-species variability tractable

Works in Progress

- Even more efficient DTI acquisitions
- Better in vivo cardiac DTI
- Vector or tensor-based statistics
- 4D and longitudinal atlases

Acknowledgments

Contributors

Sarang Joshi, Ph.D. Zhi-Pei Liang, Ph.D. Julius Guccione, Ph.D.

Yi Jiang, Ph.D. Nilesh Mistry, Ph.D. Wendy Shi Lindsey Healy Research Funding NIH/NCRR

NIH/NHLBI Whitaker

