Phantom and in vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images v. kV portal images v. cone beam CT

Cornelia Walter, Judit Boda-Heggemann, Hansjörg Wertz, Iris Loeb, Angelika Rahn Frank Lohr, Frederik Wenz Journal of Radiotherapy and Oncology Department of Radiation Oncology University of Heidelberg, Manheim, Germany

presented by A riel Jefferson

Introduction to radiotherapy

- Definition: Radiotherapy (radiation therapy) is the treatment of cancerous cells with ionizing radiation
- High energy x-rays in the megavolt MV range
 - 1 photon = millions of electron volts of energy
 - Goal: to damage cell DNA to stop their proliferation
- How do we ensure precise delivery of the therapy beam to the cancer cells with minimal exposure to normal tissues?

Image guidance

- Take an image of internal patient anatomy before and sometimes during treatment
- Efficient imaging techniques minimize the difference between clinical target volume and planning target volume
 - Clinical target volume: actual site and volume of the cancerous mass
 - Planning target volume: created to account for tumor/organ movement or change in size

What determines the effectiveness of an imaging technique?

- High contrast
- Spatial resolution
- Low dose exposure to the patient
 - The most commonly used imaging techniques involve x-rays

Imaging modalities evaluated

Elekta Synergy System Linear Accelerator

MV and kV portal images

- Portal images
 - Imaging beam originates from the gantry head and is detected by the EPID (electronic portal imaging device)

Cone beam CT

- Cone beam x-ray configuration
 - Imaging beam originates from the online x-ray source which rotates

A. Amer et al. "Imaging doses from the Elekta Synergy Cone beam CT system" 2007

Advantages and Disadvantages

• MV portal imaging

 Uses the actual treatment beam to acquire images (standard positioning procedure)

Advantage

- Easy and readily available during the treatment which allows for patient repositioning if necessary

Disadvantages

- Provides one 2D image per acquisition
- MV beams usually only detect bone, treatment usually targets soft tissue

Advantages and Disadvantages

- kV portal imaging
 - Uses a lower energy version of MV x-ray

Advantages

- Lower energy allows for detection of soft tissue structures
- Lower energy = lower absorbed dose

Disadvantage <u>– Provid</u>es a 2D image

Advantages and Disadvantages

Cone beam CT imaging
Uses a low energy kV x-rays

Advantages

- Lower energy allows for detection of soft tissue structures
- CBCT apparatus rotates around the patient to obtain a 360 degree series of projections
 - Once reconstructed, the projections provide a 3D volumetric image of the patient's anatomy

Questions

- Can a high contrast, spatially resolute image be acquired while limiting the radiation dose absorbed to the patient?
- More specifically, which of these imaging modalities is the most efficient for purposes of image-guided radiotherapy?

Materials and methods

- Elekta Synergy system 6 MV linear accelerator
- 5 prostate radiotherapy patients
 - 3 *in vivo* dose measurements were obtained per patient (one for each imaging modality)
- CTDI phantom for 3 cone beam CT dose measurements

Materials and methods

- Quantities measured
 - MV portal image
 - anterior/posterior and lateral dose was measured *in vivo* both on skin and in rectum
 - kV portal image
 - anterior/posterior and lateral dose was measured *in vivo* both on skin and in rectum
 - Cone beam CT
 - *In vivo* dose measured inside rectum only
 - Dose inside CTDI phantom

In vivo dose measurements

- A semi-flexible ionization chamber was fixed to the patient's skin - PTW 31003
 - 0.3cm³ sensitive volume

- Rectal measurements were performed with a micro-chamber
 - PTW 23323
 - 0.1cm³ sensitive volume

CTDI phantom measurements

- CT chamber
 - 3.14cm³ measuring volume
 - 10cm sensitive distance
- Ionization chamber
 - 0.3cm³ in size

 The two chambers were irradiated over the full length so the entire irradiated volume (length > 10cm) could be measured

Results: in vivo measurements

measurements.

Table 1 Results of in-vivo dose measurements (mGy)					
Dose (mGy)	MV	_			
	AP				
Surface					
av	57.78				
SD	1.17				
Rectum					
av	33.90				
SD	1.81	_			
Bold values	are used to	emphasize	the average	e value	of dose

Portal image Results

Fig1. Portal images
(a) kV -source 0,
(b) kV -source 90,
(c) M V -source 0
and
(d) M V -source 90.

CBCT image results

Fig. 2. (a) Transversal, (b) coronal and (c) sagittal reconstruction of a 360° volume scan.

CTDI phantom results

- CT chamber
 - Avg CTDI in center: 10.2 mGy
 - Avg CTDI in periphery: 23.6 mGy
- From these averages, the <u>weighted</u> CTDI was calculated:

$$CTDI_{w} = \frac{1}{3}CTDI_{c} + \frac{2}{3}CTDI_{p}$$

• Result: 19.1 mGy

CTDI phantom results

- 0.3cm³ ionization chamber
 - Avg CTDI in center: 11.4 mGy
 - Avg CTDI in periphery: 25.4 mGy
- From these averages, the <u>weighted</u> CTDI was calculated:

$$CTDI_{w} = \frac{1}{3}CTDI_{c} + \frac{2}{3}CTDI_{p}$$

- Result: 20.7 mGy
- Both chamber measurements concur wth the *in vivo* measurements (17.23 mGy +/- 2.76)

Statistics

kV portal image dose was 98-99% lower than MV

Comparing both skin and rectal dose measurements

Cone beam CT dose was 73% lower than MV

Comparing only rectal dose

Conclusions

- Gantry-mounted kV source (kV portal imaging) is a reliable tool for fast position verification
 - Low dose
 - Better image quality
- The tested kV-cone beam CT is well suited for daily position verification
 - Provides critical information about 3D patient alignment