A Complete dose study of double orbit cone beam computed tomography

Ariel Jefferson

Department of Radiation Oncology Virginia Commonwealth University Medical Center

Fan-beam vs. Cone-beam

Project Outline

- Department of Radiation Oncology, VCU Medical Center
 - Image-guided radiotherapy
- CT imaging using X-rays
- Double Orbit = New method of obtaining CT scans
 - Measure exact absorbed radiation dosage from new, non-standard method of image-guidance

Varian systems LINAC with on-board imager

Depth: 6

Thr. 128

Previous research on double orbit modality

Human head and neck area scanned with **single** orbit CBCT (14cm)

Human head and neck area scanned with **double** orbit CBCT (28cm)

Method

- Double orbit cone beam
- Step and shoot modality
- Two tests
 - X-ray film, water phantom
 - Optical density > relative exposure > absorbed radiation dose
 - Thermoluminescent dosimeter, Rando phantom
 - tubes of thermoluminescent crystals
 - Disperse tubes throughout the phantom
 - when heated, emit light

Thermoluminescent dosimeters

Phantoms

Phantom slices with TLD's inserted

Interior anatomy of Rando phantom

Rando phantom

Phantom simulation of human torso

Possible results and implications

• Double orbit method

- Determine exact amount of absorbed radiation; expect small dose
- Inform the public about exact dosimetry of double orbit cone beam CT

Varian systems LINAC with on-board imager