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An exploratory first step de novo ligand prediction program is made and tested from two different fragment-based ligand design
methodologies using the HINT force field model and a statistically validated water relevancy algorithm based on HINT Scores and
another geometrically-based protocol called RANK. One methodology used water molecules as starting points for fragment
optimization and novel ligand assembly while the other method used a 3-D hydrophobic (or acid/base) map, using the extreme
points on these maps as starting points for the molecules tagged as best for those specific interactions. Throughout this study a new
fragment-based drug design protocol is tested and results are compared to existing ligand binding data, and it was found that while
using water molecules as starting points don't correctly predict actual ligand substituent groups, it might be used as a proper
protocol to predict optimizations to currently existing ligands by superimposing pre-ligand and post-ligand binding events. More
development is needed for the second methodology, while the development of both developed novel database organizations and
several algorithms and data-storing techniques for preserving the information found from these particular calculations.

Introduction

The design of new drugs is an extensive and ever-growing
problem. As simple happenstance drug discoveries have waned
and with the advent of more detailed information being learned
about the particulars in certain disease mechanisms, the need has
come about for designing specific drug molecules to address
particular identified target sites.

The most common and easiest handles for drug targets are
proteins. Proteins are excellent targets because they control nearly
every mechanism in your body, are large and bulky, and contain
numerous handles for binding drug molecules in ways that alter
their own function and behavior. Additionally, more and more is
being learned about proteins each day as more protein structures
are elucidated and understood through X-Ray Crystallography,
Electron Microscopy, and Nuclear Magnetic Spectroscopy. As
these structures are elucidated and as the mechanisms they control
are categorized and mapped, control targets are developed for
which specific drug molecules are needed.

Many novel ways have been developed for understanding how
ligands will bind to proteins and from thence control and effect
the protein's behavior, controlling the mechanism it manages.
These efforts have largely been put forth to create high
throughput, inexpensive, computational assay calculations' that
will enable chemists to narrow what compounds they need to
synthesize from millions to a few hundred.

One method that has been used in the past for understanding
these ligand-protein interactions has been specifically studying
proteins before and after known binding ligands have been
attached, usually through their crystal structure.” These studies
specifically exploit actual ligand binding information as a
predictive element for understanding how a new protein who's
ligand information is unknown might bind and what it might bind
to. As there are many more proteins of which little is known
about its binding mechnism than there are proteins that detailed
binding mechanism is understood, this method, although valuable
in some areas, is inherently limited. Other methods must then be
explored.

One such other method, known as PRO _LIGAND?, uses a
novel algorithm to conduct a study of known pharmacophores and
make generalizations of the binding data which is then used as a
predictive element for understanding other similar interactions.

Essentially trained data is used to come up with a more applicable
novel result. The method that it uses for ligand-protein
interactions is called docking, and many such other docking
studies have been done using this general concept.

Proteins are good drug targets because they are large, bulky, and possess
many good binding sites. This protein, 2CTV, as most of the other proteins in the
human body, is surrounded by water molecules. A drug molecule binds in the
cavity and is just visible.

Essentially docking mechanisms make use of some kind of
scoring technique based on some kind of factors that contribute to
energy and they do so by computationally moving the ligand
around in the target area of a protein until the most energetically
favorable conformation is reached. Studies have been made
evaluating different scoring functions* for these docking
algorithms as well as conducting a general comparison the
different docking algorithms themselves, which are built on
differing assumptions and models.” Some of these automated
docking models are better than others, and the ranking of these
models are generally situationally specific.

To make some of these models better, some have focused on
building better scoring mechanisms that are less situationally
dependent. Others have focused on synthesizing the various
docking methods together in a combinatorial way with varied
successes.®” Generally, many such specific studies have been
conducted to evaluate the performance in a generalized situation
with many different ligands to be docked in an attempt to gain
more general knowledge about the docking procedure and the
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specific system being studied. Some of these studies have even
gone so far as to make predictions for ligands that would
potentially bind the compounds.®

Alternatively, many have turned to mathematical systems that
use graphs and various branched and genetic algorithms to solve
the problem of compound selection, comformation, and
idealization in the protein active site. Most of these studies are
concerned with developing the algorithms efficient and robust
enough to handle the stream of information that needs to be
processed in reducing the natural complexity of ligand binding to
large proteins. One such study’ developed a unique graphed
algorithm to more efficiently classify and scan potential
compounds and protein active sites, while another developed the
optimization mathematics necessary to solve a similar problem.'

Another area in which much recent work has been
accomplished is that of the interaction of water and proteins. The
human body is well known as an ageuous environment as water
abounds around nearly every chemical reaction occuring in the
body. Water also affects nearly every protein's creation,
conformation, and activity. Thus, studying the interaction of
water with proteins could demonstrable valuable information
about ligand-protein interaction, protein interaction, and other
protein mechanisms.

Some of these water-protein studies have focused on the
general water molecules found in the crystal structures, and how
their interactions can be understood within the matrix of the
protein.' These studies have demonstrated many times over that
water is also an affector of ligand binding in active sites of target
proteins.'>"* Klebe notes that about two-thirds of all liganded
proteins have at least one water molecule mediating the ligand
binding phenomenon.'*

As water is a demonstrated affector of ligand-protein
interactions, many have tried various methods that attempted to
classify water molecules and understand how they mediate and
affect ligand-protein interactions. One such study, as conducted
by Essex, attempted to use bayesian probability and extensive
computational models that attempt to predict individual water
molecules roles in the ligand-protein binding mechanism." Other
studies have attempted to use water molecules as further handles
for predicting ligand optimizations by the addition of substituent
groups to these ligands with the energy necessary to replace the
water molecules.'® These models assume that water molecules are
in a particular position within a protein because they are "happy"
there, presumably making some kind of polar bond. If polar side-
groups are added to the known ligand structure that would be
more optimal than the water molecule, presumably the ligand
would have another handle with which it can bind to the protein.
This additional handle would ideally boost the affinity of the drug
molecule, making its interaction with the protein stronger and
more ideal.

Nevertheless, another method in which many recent
developments have been made is better understanding what the
water-protein interactions say about protein active sites,
particularly understanding the effect of the hydrophobic effect'’
on ligand-protein interactions. As recently demonstrated by
Amadasi et al.'"® HINT, a computational protocol that scores

hydropathic interactions proportionally to free energy'® based on
the LogP coefficient and other geometrical considerations,”*' can
be used in combination with another geometrically validated
protocol, RANK,? to accurately identify water molecules that
will play a significant role in the binding of the ligand. This
model, which will not be described in great detail here due to
space limitations, attempts to use these very hydrophobic
interactions to create relevant, simple, and intuitive predictive
calculations that shed light on the nature of the protein and the
ligand the interaction the two have together. These significant
water molecules can be considered "relevant" in protein active
sites and are important in docking and binding considerations.?
Additionally, the 'irrelevant" waters, molecules that are
energetically replaced in protein active sites during a ligand
binding event, are also supposed to be energetically indicative of
the probabilistic ligand binding structure. Examination of
crystalized structures (both uncomplexed and complexed) show
replaced waters and indicate that ligand/protein interactions are
more energetically favorable than the interactions the previous
occupying water molecules had.® This indicates ligand binding
information "stored" within the mapped energetics of water
molecules currently occupying protein structures.
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Fig. 2
HINT Score and Rank together provide an overall probability system that is
predictive of water molecule relevancy.”

Given the demonstrated statistical relationship between Rank,
HINT, and water molecule relevancy during a ligand binding
event,”?it is presumably safe to assume that Rank and HINT can
provide a hydropathic description of the active site of a protein
and give a three-dimensional predictive map of the active site that
can be used to provide information about the sort of ligand
needed to best fill the cavity and bind affecting the protein.

The experiments conducted in this paper expound and develop
two methodologies that provide a proof-of-concept first step
extraction of the information presumed to be contained within
water molecules native to uncomplexed proteins.
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Fig. 3
The hormone and ligand cortisol, as portrayed (left) without the the HINT Map
of the HINT force field and (right) with it. The red regions correspond to
hydrophillic regions and the green regions correspond to hydrophobic regions.

Before introducing the two unique developmental
methodologies discussed in this paper, it is important to note that
this study of ligand-protein behavior does not attempt to
incorporate protein flexibility and protein conformation into the
results. The proteins specifically chosen in the data set were
proteins that had little conformational change from their
uncomplexed forms to their complexed forms. This system was
chosen so as to minimize the error added to a system by protein
conformational change, unlike other studies which have
attempted to include protein conformation analysis into the ligand
binding phenomenon.”

The first methodology uses water molecules as a starting points
for building novel ligands by replacing the single water molecules
with substituent groups carefully chosen and built into an assay
database. Using the HINT force field, the substituent is optimized
and scored to provide the strength of interactions it has with the
protein in its current position. These results can then be compared
to the water molecule it has superceded.

The second methodology involves a 3-D hydrophobic map (or
alternatively an acid/base map) using the extreme points on these
maps (corresponding to places of strong hydrophobic/
hydrophillic or strong acid/base interactions) as starting points for
aligning the molecules, optimizing them, and building initial
substituent locations for novel ligands.

Both methodologies involve starting with a small fragment
typical to many kinds of ligand molecules, placing them and
optimizing them in those specified locations to build a first-step
probabilistic map of good substituent group locations for a novel
ligand binding to that particular protein. Increased numbers of
specific substituent groups to the database necessarily increases
the accuracy and specifity of the database, and the results from
these initial calculations are tabulated energy (HINT score) and
position/conformation values (cartesian coordinates and polar
coordinates) given the individual interaction of that substituent
group with the localized portion of the protein nearest the
substituent.

Ideally, this proof-of-concept methodology would create an
"outline" of substituent groups that are energetically situated on
specific handles located within the protein active site, handles that
could be "joined" to create a novel ligand using a linker database
of center groups of molecules on which substituents could be
attached in various locations. Although this paper does not addres
the linker problem, it does attempt to describe via proof-of-
concept programming how the probabilistic substituent prediction

methodoligies work to create a "substituent map" for most
probable ligands.

Results and Discussion

The following experimental calculations were made on Linux,
dual-core HP computers that were linked over a network. The
version of the HINT software was 3.12, along with some initial
experimental versions of 3.13. The molecular modeling program,
Sybyl v7.3 and v8.0 were used for the modeling and calculations
made. The substituent replacement protocol was made using the
Sybyl front-end interface, and later automated using the SPL
(Sybyl Programming Language) interface to increase the accuracy
and speed of the calculations being made. All calculations were
run on Sybyl v7.3. Most graphics for this paper were made in
v8.0.

The database of substituents for both developed
methdodologies was made using the Sybyl Database Framework,
and Table 1 describes the substituents used in the database.

DB Code Name Actual Group
ALDO Aldehyde
AR Aromatic Ring
CH3 Methyl Group
CONH2 Acetamide
COO Carboxylate
COOH Carboxylic Acid
NCH Imino
NH Cyano
NH2 Amino
NH3 Ammonio
OH Alcohol
SH Thiol

Table 1
The table of substituents used in the database for water replacement.

Two databases were made, one for the Water Target
methdology and one for the HINT Map Target methodology. The
Water Target database was designed so that the dummy carbon
atom and the atom of the substituent attached to it would have
certain id numbers so that the program could center the atom
attached to the dummy carbon on the oxygen of the water
molecule being targeted. The HINT Map Target database uses
Sybyl Dummy atoms to deliniate localized acid/base and
hydrophobic/hydrophillic targets. The following describes the
methods used to write the two SPL programs.
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Water Targets
The automated SPL program was written according to the
following protocol:
1) Set up environmental variables for calculation
2) Identify target waters
3) Center of Gravity (COG) of selected waters calculated
(Fig 4, attached)
4) Substituents from pre-defined database are assayed
5) Each substituent is then run through a subroutine (see
Figs. 5-7, attached):
Move substituent (center over target water)
Optimize using HINT Force Field
Bring Carbon Tail around to proper configuration
Take HINT Intermolecular Score, record
Calculate distance and three-dimensional angle of
carbon tail.
6) Combine all intermolecular scores from assay of
database together into one file.
7) Close program, database, and results file.

Dk e =

Every intermolecular score was stored in its own .tab file and
the results file was stored into a .csv file that could be opened by
a spreadsheet program like EXCEL to calculate results.

Each water molecule was evaluated and substituents that
possessed better scores (higher scores) than the water molecule
were reloaded into Sybyl and superimposed on top of the actual
real ligand that bound to the protein to see how the substituent
groups matched with the real ones on the actual ligand.

Only substituents with high scores were analyzed as the HINT
score has an inverse relationship with AG. Lower AG values
mean greater affinity, thus higher HINT score values mean
greater affinity. The hope was that the method would correctly
predict actual substituents. The reality was the ligands in the
structures never exactly replaced a water molecule with its
substituents so the testing system was directly limited in that the
substituents would be "stuck" where the waters were positioned.

Interestingly, all of the best scoring substituents were correctly
positioned (their carbon tails were pointed towards or outwards of
the active site, in such a way that it could easily bind to a linker or
another drug molecule. Some of the attached figures (Figs. 8-11)
demonstrate the predictions made by the program.

HINT Map Targets

One of the continuing portions of this project is the planned
calculations on the HINT Map Targets, as described earlier in this
paper. A preliminary SPL program was written that correctly ran
automated substituent translation and HINT optimization onto the
HINT Map Targets. Preliminary results were inconclusive as the
coordinate systems for the HINT Map and the HINT Partition did
not match properly, causing errors. More HINT Maps need to be
generated to be able to run the SPL program and do more
analysis.

A novel database organization method was designed using the
Sybyl Database Format as in the previous water target SPL
program. This format, unlike the previous database, incorporated
information that included acid/base and hydrophobic/hydrophillic

targets within the substituent molecules so that their acid/base or
hydrophobic/hydrophillic portions could be aligned directly onto
the corresponding acid/base or hydrophobic/hydrophillic targets
on the HINT Map to assist with HINT Optimization and idealize
the interaction between the substituent and the protein. These
targets within the substituents were made using Sybyl Dummy
Atoms which the SPL program would delete after using their
coordinates as reference points for the translation and
optimization of the molecule.

Conclusions

While there are no conclusively ideal results, the results of the
paper did reveal valuable information: namely that water
molecules are not necessarily the best starting points for novel
ligand prediction but that they might be good points for working
predictive ligand optimizations.

Initial results are not yet complete for the mapped acid/base and
hydrophobic/hydrophillic points. The program for this method
has been debugged and tested on one protein system which just
included the uncomplexed protein. Initial optimization results for
this experiment do reveal that having multiple targets (acid/base
and hydrophobic/hydrophillic targets) help the optimization
algorithm by pre-starting it in its near ideal location with the
protein. This method increases reproducibility and theoretically
increases the accuracy of the calculations.

The results of this study also demonstrate successfully the
eventual feasability of a fragment-based de novo drug design
program based on the HINT Force Field. Initial results, while not
ideal, were indicative enough to merit further research and
programming.

Eventually, when the substituent mapping is made complete, a
linking system will be programmed. It is suspected at this
branched optimization problem will involve some kind of
branched tree structure solution or the use of some kind of genetic
algorithm. Many studies have already demonstrated how this
particular problem might be eventually solved. One such study®
uses a breadth-first, branched tree procedure algorithm for
determining maximum substructures through a potential
combinatorial means of different potential ligand attributes.
Another has developed a novel moethod of aligning and matching
drug ligand molecules using surface shape similarity.”” This
particular method may be valuable for its ability to "match"
different attributes of molecules together, helping to find the
correct linking compounds to fit in the proper orientation within
the protein active site. A final proposed solution for the problem
may be the use of genetic algorithms. Another particular study14
makes use of genetic algorithms and demonstrates how they are
good for molecular recognition and design by solving
combinatorial ~optimization problems using the genetic
algorithm's mutations and crossover operators.

However the problem may be solved, the research discussed in
this paper demonstrates how the research might be extended to
the point of designing successful linker molecules to complete the
de novo molecule prediction algorithm using the HINT Force
Field model.
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Supplemental Materials

Fig 4.
Waters are chosen in the protein active site.

Fig. 5
The Center of Gravity is calculated from amongst the chosen water molecules . . .



Fig. 6

The individual substituents are translated into the position of the oxygen on the target water molecule.
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Fig. 8
A predicted NH3 substituent position, with dummy carbon aligned relative to the real ligand molecule (green). (2CTV)

Fig. 9
Predicted Alcohol group, with dummy carbon aligned parallel to ligand arm. The water it replaces can be clearly seen.



Fig. 10
A predicted aldehyde group on 1LID. This particular result shows how an arm might be added to the real ligand to make its interaction stronger with the protein by
incorporating the aldehyde.

Fig. 11
An aromatic ring very closely aligns itself with the carbon (non-aromatic ring) for the ligand in 2CTV. This was not the most energetically favorable result,
but if translation were allowed for the aromatic molecule it might be.



