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Abstract 
 
 In the midst of the post-genomic era, the wish to engineer pharmaceuticals, vaccines, and 
organisms is hindered by the need to define the cell, tissue, and the organism.  The way that life 
organizes itself is a necessity for altering the network of life-events.  Now that numerous 
genomes from a variety of organisms have been sequenced, there is a need to define the function 
of all the genes and genetic elements.  One approach that this paper will illustrate is the use of 
microarray data from different cell types to define the function of a gene, based on gene 
expression profile-comparisons to previously defined genes.  In order to accomplish this, 
Random Forest and Neural Network classification models were used to predict the functions of 
genes.  Data from these models were used to relate cell functions and construct a network of 
pathways.  In order to understand how these pathways interact and are regulated by the cell, the 
upstream transcription factor binding sites (TFBS) were studied.  Using Random Forest, genes 
were classified into defined Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
based on the TFBS.  Using the model output, the important TFBS that define a pathway were 
found. 
 
Introduction 
 
 The two major questions that were asked during the course of this research project were 
addressing the function of a gene as well as its regulation.  These questions were addressed with 
respect to biochemical pathways and the network of how these pathways are related to one 
another. 
 
 Initially, the goal of gene identification was for the purpose of understanding what genes 
were targeted by pharmaceutical drugs and why.  Other reasons for gene identification are for 
characterizing disease and developing drug therapy.  A great deal of research is conducted with 
the goal of creating gene prediction models, but the reliability and reproducibility of the models 
are still at the beginning stages of a success (Friedberg 2006).  Even still, models to identify 
genes within the DNA sequences are still in development (Mathé et al 2002). 
 
 Gene expression data has been used to predict characteristics of biological phenomena in 
many fields of research (Hughes et al 2000).  The NCI 60 cell line gene expression profiles have 
been used to identify types of cancer (Ross et al 2000).  Previous work using the model in this 
paper has been published that assesses the performance of the model as a predictor (Ko et al 
2005).  Applications of similar projects are also studied by others for purposes of personalized 
cancer treatment (Nevins 2003). 



 
 The gene  prediction model that was created uses a set of previously defined genes to 
compare unknown genes in order to identify their function.  The training genes were defined by 
the KEGG into their respective pathways.  The model classified unknown genes into their most 
probable pathways and also indicated possible secondary, tertiary, and quaternary pathways that 
the gene could be affiliated with.  Using this data, a network of pathways was constructed.   
 

It is assumed that these pathways were related by the model based on the fact that genes 
from different pathways are co-expressed.  It is well accepted among the scientific community 
that co-expressed genes are a part of a well-organized network.  Based on this assumption, the 
transcriptional regulatory properties of the genes were then studied to find if a correlation 
between the regulation and expression of genes can be predicted by computer modeling. 
 
Methods 
 
Gene Expression Profile Model (GEP) 

Neural Network and Random Forest models were used to discover what cell functions are 
related based on gene expression profiles of NCI�s 60 cell lines.  The tumor cell lines are from 
lung, colon, breast, prostate, kidney, melanoma, leukemia, central nervous system, and ovary 
cancers (Developmental Therapeutics Program NCI / NIH).  The models were created to classify 
genes based on their function.  In order for the models to correctly classify a gene, a large 
number of references was needed.  For the 6,165 genes analyzed, 367 of the genes were used as a 
reference.  These genes are well known and their functions were determined by the KEGG.  Each 
gene�s expression profile was compared to the reference set, and classified into the pathway that 
best fit.  The 367 training genes only represented 21 pathways of the 300+ pathways from 
KEGG, so the models could only classify genes into these 21 pathways.  These 21 pathways are 
listed in Table 1.  The 21 functions of the cell were chosen from metabolic, genetic information, 
environmental information, and cellular processes that are well known.  Also, a human disease, 
Huntington�s Chorea, was included among the cell functions. 
 
Table 1.  The 21 Pathways from the KEGG that were used to classify genes in the gene expression profile model and 
the TFBS model.  Pathways fall into five categories including metabolism, genetic information processing, cellular 
processes, environmental information processing, and human diseases. 

 

� M etabolism  
� Arginine and Proline   
� N  - glycans  
� Glycolysis 
� O xidative  Phosphorylation 
� TC A C ycle  
� P yrim idine 
� Glutathione 
� V aline , Leucine, Isoleucine 
� Porphyrin  
� Purine  
� Glycerolipids 

� Genetic  Inform ation Processing  
� Ribosom e 
� Polym erases 
� tRN A 
� Proteasom e  

� Cellular Processes 
� Cell Cycle  
� Apoptosis 
� Cell Adhesion 

� Environ mental Infor mation Processing  
� M AP Kinase 
� PI Kinase  

� H um an D iseases 
� Huntington�s D isease  



The neural network model determines how probable it is that a gene is in a pathway and 
assigns a relative probability for all 21 pathways.  For the Random Forest Model, a gene is 
classified into one pathway, but each time the model is run, it may classify the gene differently.  
The pathway the gene is classified into most of the time is most likely to be the pathway it 
belongs to.  So, the model was run 500 times, the number of times the gene was classified into 
each pathway was recorded, and the �votes� were converted to relative probabilities (votes/500).  
This process was repeated 100 times to get a more representative answer.  All of the probabilities 
from both models were analyzed using Microsoft Excel and can be obtained from supplementary 
material. 
  

In order to decide what pathways were linked, programs were written in Microsoft Visual 
Basic.  The first program counted how many genes were in a primary pathway and how many of 
those genes went to the same secondary, tertiary, or quaternary pathway.  The second program 
calculated the binomial distribution to determine how probable it is that the two pathways are 
related.  The number of successes was how many genes from the primary pathway were in the 
secondary pathway.  The number of trials was how many genes in total were classified to the 
secondary pathway.  The probability of success was determined by dividing the number of genes 
in the primary pathway by the total number of genes in the model.  These values were used as p-
values and were converted to �log (p-values) to be more easily read. The p-values for both 
models can be found in supplementary materials. 
  

Using the pathway association scores, a network of how the different pathways are 
connected was constructed for both models and for primary versus secondary, tertiary, and 
quaternary functions.  These diagrams were created in Microsoft Excel and can be found in 
supplementary materials. 
  
Transcription Factor Binding Site Model (TFBS) 

The second gene prediction method involved transcription factor binding site data 
(TFBS) for the training genes.  288 genes defined using the same 21 KEGG pathways as the 
GEP model were used to train a Random Forest Model.  The Telis Database website was used to 
find TFBS that were located 300bp or less upstream of the training genes (Cole 2004).  A 
spreadsheet file was created indicating the TFBS and number of copies of the site that each gene 
possessed (Supplementary Material).  Using Microsoft Visual Basic, code was written to operate 
the Random Forest Model using the R plug-in for Microsoft Excel.  Random Forest was created 
by Leo Breiman, Liaw and Wiener developed the program to run in R, and Thomas Baier and 
Erich Neuwirth developed the R-Excel add-in that controls R (Breiman 2001).  Twenty variables 
(TFBS) were used at each branching point of the decision tree and 5,000 trees were compiled.  
To verify the model, just the training genes are used so that all but one gene are used as a 
reference, and the one gene is classified.  Three output files are given (Supplementary Materials).  
A confusion matrix shows how many genes were classified to each pathway, and what pathway 
they should have been classified in.  A second file shows for each gene, the fraction of 5,000 
trees that classified the gene to each pathway.  The highest value was used as the classification.  
The percent error, and purity was found for each pathway.  The third file shows importance 
values for each element with respect to each pathway.  The importance value is based on how 
well the pathway performed without the element present.  The higher the value, the more 
important the element was for classifying the genes correctly for that pathway.   



  
To find what element was most important for each pathway, two approaches were taken.  

First, the pathway that received the highest score for an element was best correlated with that 
element.  Second, elements with the highest importance value for a pathway were considered 
most relevant to that pathway.  Threshold values for the importance value were taken for each 
individual pathway, based on how many training genes of that pathway contained that TFBS.  
After the TFBS were identified for each pathway, the training genes that were correctly 
classified and contained the important TFBS were identified.  The TFBS that contained the 
correctly identified genes were analyzed through literature searches (Supplementary Materials). 
 
Results 
 
Gene Expression Profile Model 
 The gene expression profile model produced a complex set of cellular networks based on 
the pathway associations.  All of these networks can be found in supplementary material; 
however, figure 1 shows an example of the type of networks that were created.  Three major 
pathways, cell cycle, ribosome synthesis, and PI kinase signaling, possessed the greatest number 
of connections.  Table 2 shows the different cellular functions that were often associated with the 
three major pathways. 
 
 
Figure 1.  Cellular function networks were created from pairwise comparisons of the primary, secondary, tertiary, 
and quaternary pathways.  The figure shows a comparison of the primary and secondary pathways from the Neural 
Network model. 

 
 
 
 
 

Neural Network
Comparing Pathway 1 and 2

Apoptosis

TCAGlycolysis

Arg and Pro

Purine

Pyrimidine

Val/Leu/Ile

Glutathione

N-glycans

Glycerolipids

Porphyrin

tRNA

Ribosome

Proteasome

Cell Adhesion

Huntington's Disease

Oxidative Phosphorylation

Polymerases

MAP Kinase

PI Kinase

Cell Cycle

Primary Secondary
Legend -log  p-values

18- 39

11- 14

8 - 10

4 - 6
3.9

Significant p-value= 4



Table 2.  The gene expression profile model associated many functions to three major pathways: cell cycle, 
ribosome synthesis, and PI kinase signaling pathways.  The associated pathways covered a broad set of functions 
including metabolism, cellular processes, genetic information processes, environmental processing, and human 
diseases. 

 Primary Pathway   

Functional Category Cell Cycle Ribosome PI Kinase 
Metabolism Arginine and Proline Glycolysis Glycerolipids 

 N-glycans 
Oxidative 

Phosphorylation Glycolysis 
  TCA Cycle Purine 

   
Valine, Leucine, and 

Isoleucine 
Cellular Processes Apoptosis  Cell Cycle 
Genetic Information Polymerases tRNA  

Processes Proteasome   
Environmental Processing PI Kinase   

Human Diseases Huntington's Disease  Huntington's Disease 
 
Transcription Factor Binding Sites Model 
 Of the 21 cellular pathways, six of these pathways contained correctly classified genes 
from verification analysis of training genes.  The percent error and purity for these pathways are 
shown in Table 3.  The number of correctly and incorrectly classified genes for each pathway 
were found as well as the total number of genes that were classified to a pathway (Table 3).  
TFBS that had high importance values for the six pathways are listed in Table 4, and Table 5 and 
6 describes the basic functions of the transcription factors, as defined by the Gene Ontology.  
Literature searches were performed to investigate the shared transcription factors among 
different pathways.  Figure 2 shows a network of functions compiled based on previous research 
that explains associations made in the GEP and TFBS models. 
 
Table 3.  The TFBS model correctly classified six pathways.  Percent error and purity were calculated for the 
pathway.  Performance of the individual pathways was also analyzed by the number of genes that were correctly and 
incorrectly classified for each defined pathway, as well as the total number of genes that the TFBS classified to that 
pathway. 

 Cell Cycle MAP Kinase 
Signaling 

Oxidative 
Phosphorylation

PI Kinase 
Signaling 

Purine Ribosome 
Synthesis

Error (%) 74 89 95 54 82 42 
Purity (%) 14 50 6 22 14 18 

Correctly Classified Genes 9 1 1 12 3 21 
Incorrectly Classified Genes 25 8 21 14 14 14 
Total Classified in Pathway 65 2 17 55 21 117 

 
 
 
 
 
 
 
 



Table 4. Using the importance values, the important factors for the cell cycle, MAP kinase signaling, oxidative 
phosphorylation, PI kinase signaling, purine synthesis, and ribosome synthesis pathways were determined.  
Transcription factors in bold are shared among other pathways. 

 Cell Cycle MAP Kinase 
Signaling 

Oxidative 
Phosphorylation

PI Kinase 
Signaling

Purine 
Synthesis 

Ribosome 
Synthesis

Transcription Ahr AP2 AP2alpha AP1 Egr3 AP1 
 Factors ARNT AP2alpha deltaEF1 AP2alpha MyoD Dof 

  Elk c_ETS GATA2 Dof Nkx2.5 Elk 
  c-Myc   c-Myb  FREAC3 
  Max   NF1  GATA3 
  NFY     MZF 
  PBX1     SAP 
       SP1 
            TBP 

 
Table 5.  Using the Gene Ontology definitions of the transcription factors associated with each pathway, cellular 
functions were correlated with the cell cycle, ribosome synthesis, and PI kinase signaling pathways. 

 

 Cellular Pathways   

Functional 
Categories 

Cell Cycle Ribosome Synthesis PI Kinase Signaling 

Cellular 
Processes 

Cell Cycle Cell Cycle Cell Cycle 

 Apoptosis Apoptosis  
Developmental 

Processes 
Embryonic Development Nervous System 

Development 
Ectoderm Development

 Hindbrain Development Plant Growth Development Odontogenesis 
 Sex Differentiation Embryonic Development  
  Circulatory and Heart 

development 
 

  Multiple Organ  
Development 

 

Differentiation/ 
Proliferation 

Differentiation Leading Edge Cell 
Differentiation 

Cell Differentiation 

 Proliferation Proliferation  
Environmental 

Processing 
Response to Stress Inflammatory Response Signal Transduction 

 Response to Radiation   



Table 6.  Using the Gene Ontology definitions of the transcription factors associated with each pathway, cellular 
functions were correlated with the purine synthesis, MAP kinase signaling, and oxidative phosphorylation pathways. 

 
Figure 2.  Based on literature searches, the insulin signaling network including glucose, insulin, MAP kinase, PI 
kinase, ribosome synthesis, and cell cycle was constructed.  Solid lines were defined by literature, and several were 
correlated by the models.  Dotted lines were related by the models, but are not a defined relationship in the insulin 
pathway. 

 

 Cellular Pathways   

Functional 
Categories 

Purine Synthesis Map Kinase Signaling Oxidative 
Phosphorylation 

Developmental 
Processes 

Peripheral Nervous system 
development 

Ectoderm Development CNS development 

 Muscle Development  Pituitary gland 
development 

   Ectoderm 
Development 

Differentiation/ 
Proliferation 

Cell Differentiation Positive regulation of 
erythrocyte differentiation 

Cell Proliferation 

  Negative regulation of cell 
proliferation 

Cell Fate 
determination 

   Embryonic 
morpheogenesis 

   Cell Maturation 
   Neuron differentiation

Environmental 
Processing 

Protein amino acid 
phosphorylation 

Immune Response Immune Response 

 Neuromuscular synaptic 
transmission 

Signal Transduction Phagocytosis 

 Circadian Rhythm  Signal Transduction

Glucose

Insulin Signaling

MAP Kinase
Signaling

PI Kinase
Signaling

Ribosome SynthesisCell Cycle

Part of Defined Pathway

GFP Relationship

GFP and TFBS Relationship

Defined and GFP Relationship

Defined, GFP, and TFBS Relationship



Discussion 
  
Gene Expression Profile Model 
 The networks of pathways created are based on the assumption that co-expressed genes 
are related in function.  That is, there must be some cooperative function between pathway A and 
B if their expression is occurring at the same time.  The validity of the networks created are 
based on the number of occurrences of the relationship and literature searching that was 
performed.  The number of occurrences was considered via p-values as well as the number of 
correlations between primary, secondary, tertiary, and quaternary pairwise comparisons.  
Obvious correlations that are well established were found, such as relationships found between 
the ribosome synthesis and tRNA synthesis as well as glycolysis, TCA, and oxidative 
phosphorylation (Figure 1).  Table 2 shows major connections that were found in the two 
models. 
 
Transcription Factor Binding Site Model 
 The TFBS model has a very high error, and does not seem to be able to classify the genes 
with any sort of accuracy.  There are enough reasons as to why the model may not be performing 
as to make it difficult to say for certain what the problem is.  It is already well-known that 
transcription factors enhance transcription for a large assortment of genes.  But, it is also 
proposed that modules or clusters of TBFS cooperate together to elicit transcription of a 
particular array of genes.  Initially, it was hoped that the model would find unique factors for a 
pathway or that the number of copies of a TFBS would be unique to a pathway.  However, 
neither of these cases were found.  In fact, replacing all non-zero numbers with one so that genes 
either contained or did not contain a TFBS gave nearly identical results as the original data set.  
In order to improve this model, defining clusters of TFBS for genes may be a solution.  Also, the 
TFBS for genes were only computationally found, and are not biologically proven to be used in 
vivo.  This may have introduced error into the system, which may be considerably significant.  
For instance, TFBS that were found significant for the ribosome synthesis and PI kinase 
signaling pathway were four factors from the Dof family of transcription factors that are only 
found in plants.  This may have been biologically interesting if it weren�t for the fact that the 
genes are human.  Further investigation of this anomaly was not pursued, although the Dof TFBS 
may be an artifact of evolution, and may very well have significance in the plant regulatory 
system. 
  

Another important consideration for the model is DNA and factor modifications that 
occur in the cellular environment.  Methylation, phosphorylation, acetylation, etc. all play an 
important role in the activity of molecules.  For instance, phosphorylation of the cAMP response 
element binding protein (CREB) largely determines what other factors CREB will bind to, and 
what genes will be transcribed. 
 

Also, another type of modeling tool could be used to interpret the data.  For instance, 
Neural Network modeling could be used.   
  

Despite the shortcomings of the model, some significant data does seem to have come 
from the results.  The functional identity of the TFBS for the six pathways was found using gene 
ontology (Table 5 and 6).  Then, the pathways that had TFBS in common were searched in the 



literature for regulatory connections.  Interestingly, many of the factors dealt with differentiation, 
proliferation, and developmental processes and were also often found to be tissue-specific.  What 
was found was that all pathways play a significant role in the control of the cell cycle.  All 
pathways were found to be included in the insulin pathway (Figure 2).  Two basic principles that 
govern the progression of the cell cycle are the environmental state and the health of the cell.  
The environment of the cell can be determined by the specific tissue, such as muscle, that the cell 
is a part of.  Depending on the location of the cell, the cell will divide, differentiate, or stay the 
same.  Once the cell decides what to do, it requires energy and supplies to perform the task.  So, 
once MAP kinase gives the signal to start the cell cycle, the requires ribosomal synthesis to 
occur.  And, the insulin pathway controls ribosomal synthesis to ensure that enough energy is 
present to make all the proteins necessary for DNA replication and cellular division. 

 
Both the gene expression profile and the transcription factor binding site model explain 

the insulin pathway.  The GEP model shows glycolysis to be co-expressed with the cell cycle 
and PI kinase signaling.  This connection makes sense since G1 and G2 phase of the cell cycle 
require a great deal of energy for the high rate of protein synthesis.  Also, PI kinase plays a role 
in the regulation of cell cycle progression (Kenney et al 2004).  In fact, both kinase-signaling 
pathways were found to be linked to the cell cycle in the GEP model.  Although all of the 
pathways were found to be co-expressed, they are not all co-regulated.  If glucose and the other 
pathways were regulated in the same way, they would always be expressed at once, and that 
would defeat the purpose of glucose levels regulating the function of the other pathways.  The 
same argument explains the lack of regulatory connection between MAP kinase and the cell 
cycle.  However, a regulatory connection is found between the ribosome synthesis and PI kinase 
signaling and the ribosome synthesis and the cell cycle.  The co-regulation of the ribosome 
synthesis pathway and the cell cycle is important to ensure efficient production of proteins 
during G1 and 2 (Thomas 2000).  Since PI kinase signaling is needed to activate synthesis of the 
ribosome, the co-regulation of these pathways is also required (Roquest and Vidal 1999).  It is 
worth mentioning that PI kinase and the cell cycle did not have any regulatory connections.  This 
is likely important for the same reason as MAP kinase signaling. 

 
Although these findings are interesting they are largely incomplete, since it is only 6 of 

the 21 pathways that were studied.  Although it was easy to find descriptions of transcription 
factors involved in cell cycle progress, factors important in metabolic and other processes were 
not found.  Although some research has been done on metabolic regulation, much more work is 
necessary for a complete picture (Desvergne et al 2006).  In contrast, more detailed work has 
been done to depict the embryonic development, tissue-specific regulation, and organ-specific 
regulation (Davidson et al 2002, Smith et al 2006, Olson 2006).  Recently, studies have begun to 
elucidate body plan changes and speciation based on regulatory evolution (Prud�homme et al 
2007).  An ideal model of gene networks would be the integration of all of these levels of 
control, from the individual cell to the species level, and perhaps beyond. 

 



Supplementary Material 
  

Smith, M. 2007. Bioinformatics and Bioengineering Summer Institute. Virginia Commonwealth 
University. http://ramsites.net/~msmith37/. 
- Gene Expression Profile Model Data 

o Pathway Networks 
o Pathway Probablities 
o Pathway Association Scores 

- Transcription Factor Binding Site Model Data 
o Gene IDs and TFBS Data 
o Pathway Probabilities 
o Confusion Matrix 
o TFBS Importance Values 
o TFBS Gene Ontology 
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