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Abstract: The development and validation of new meth-
ods to help direct rational strain design for metabolite
overproduction remains an important problem in meta-
bolic engineering. Here we show that computational-
ly predicted E. coli strain designs, calculated from a
genome-scale metabolic model, can lead to successful
production strains and that adaptive evolution of the
engineered strains can lead to improved production
capabilities. Three strain designs for lactate production
were implemented yielding a total of 11 evolved produc-
tion strains that were used to demonstrate the utility of
this integrated approach. Strains grown on 2 g/L glucose
at 378C showed lactate titers ranging from 0.87 to 1.75 g/L
and secretion rates that were directly coupled to growth
rates. � 2005 Wiley Periodicals, Inc.
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INTRODUCTION

Genome-scale metabolic reconstructions are emerging as

productive tools for their ability to connect genomic infor-

mation to phenotypes and to simulate whole-cell physiology

as an interconnected system. Using a genome-scale model of

Escherichia coli, this systems-level approach has been shown

to be reasonably accurate in its ability to describe the

endpoint growth phenotypes after adaptive evolution for both

wild-type (Fong et al., 2003; Ibarra et al., 2002) and single

gene deletion strains (Fong and Palsson, 2004) of E. coli.

The advent of genome-scale metabolic models has

concurrently spurred the development of numerous analy-

tical tools to study biological systems in silico. In particular, a

bi-level optimization algorithm, OptKnock, has been devel-

oped and implemented with a genome-scale metabolic model

of E. coli to computationally predict gene deletion strategies

for overproduction of succinate, lactate, 1,3-propanediol

(Burgard et al., 2003), and amino acids (Pharkya et al., 2003).

The OptKnock algorithm calculates solutions that simulta-

neously optimize two objective functions, biomass formation

(growth rate) and secretion of a target metabolite. The

premise underlying this bi-level optimization algorithm is

that overproduction of target metabolites can be achieved by

altering the structure of the metabolic network through gene

deletions such that the stoichiometry of the perturbed

network forces production of the target metabolite as normal

biomass precursors are generated. With this direct stoichio-

metric coupling of target metabolite production to biomass, it

is hypothesized that an increase in growth rate should

concurrently result in an increase in the target metabolite

production rate.

In this study, direct experimental testing of these

computational methods and the OptKnock hypothesis of

increasing production rate with increased growth rate were

conducted for production of lactate inE. coli. Beginning with

a genome-scale metabolic reconstruction of E. coli metabo-

lism, the OptKnock algorithm (Burgard et al., 2003) was used

to search the phenotypic solutions generated by the metabolic

reconstruction to determine all single, double, triple, and

quadruple gene deletion designs that would induce E. coli to

secrete lactic acid as a by-product during optimal cellular

growth. Predicted strain designs were constructed, subjected

to adaptive evolution to increase growth rates of constructed
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strains, and tested for by-product secretion and changes in

cellular phenotypes.

MATERIALS AND METHODS

Computer Simulation

The strain optimization framework, OptKnock (Burgard

et al., 2003), was used to identify multiple gene deletion

combinations that force the coupling of cellular growth

objectives with imposed chemical production targets. This

coupling is accomplished by ensuring, through gene dele-

tions, that the desired product becomes an obligatory by-

product of growth by ‘‘shaping’’ the connectivity of the

metabolic network (Fig. 1a). This task yields a bi-level

optimization problem which is solved using an efficient

solution approach inspired from concepts from LP duality

theory as described by Burgard et al. (2003). Using this

approach, solutions are found that optimize two objective

functions, biomass formation and by-product secretion. In all

cases, the OptKnock algorithm indicated that anaerobic

conditions were necessary for over-production of lactic acid

in E. coli. Initial simulations and strain designs were

calculated using the iJE660 (Edwards and Palsson, 2000)

reconstruction of E. coli metabolism. Strain designs and

cellular phenotypes were later recalculated using an updated

reconstruction of E. coli, iJR904 (Reed et al., 2003), after the

updated reconstruction had been released.

Strain Construction

The wild-type E. coli strain K12 MG1655 (ATCC# 700926)

was used as the starting strain for all experiments. The pta-

adhE double deletion strain was constructed using the ‘‘gene

gorging’’ method (Herring et al., 2003) where mutations

were introduced using a donor plasmid containing a I-Sce I

restriction site and recombination was facilitated using the

lambda Red recombinase. All other gene deletions were

conducted using homologous recombination of PCR-ampli-

fied linear fragments also using the lambda Red recombinase

as described by Datsenko and Wanner (2000). Both gene

deletion methods generated in-frame gene deletions with

minimal residual scar regions with gene deletions being

verified using PCR and physiological characteristics.

Adaptive Evolution

Adaptive evolution was conducted in 100 mL of M9 minimal

medium supplemented with 2 g/L glucose at 378C for

60 days. Cultures were sparged aseptically using nitrogen gas

and serially passed into fresh, pre-heated medium daily.

Average dilution at the time of passage was 1:100,000

(approximately 1 mL into 100 mL) every 24 h such that

approximately 10 doublings occurred each day (exact

number of doublings varied throughout evolution as growth

rates changed). The inoculum was changed throughout the

course of evolution to maintain cultures in exponential

growth for each 24 h culture period prior to being passed into

Figure 1. Design strategy for lactic acid secretion. a: Computational solution spaces illustrating by-product secretion coupling to biomass for designed strain

compared to uncoupled secretion for wild-type strain. b: Schematic representation ofE. coli central metabolism. Genes deleted for different strains in this study

are shown in boxes. Inset table indicates genes deleted for each design.
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fresh medium. Cultures were frozen and stored at regular

intervals throughout adaptive evolution.

Phenotype Assessment

Each strain was tested in a batch culture in M9 minimal

medium supplemented with 2 g/L glucose at 378C to measure

growth rate, glucose uptake rate, and by-product secretion

rate. Batch cultures were sampled at regular intervals to

monitor optical density (A600) for determination of growth

rate and to monitor chemical composition of the media for

determination of glucose uptake rate and by-product

secretion rate. The glucose concentration in the media

was measured by enzymatic assay (Sigma). By-product

concentrations were determined using UV detection by

HPLC using an Aminex87-H ion exchange column at 658C
with 5 mM H2SO4 as the mobile phase. Batch cultures were

sealed and re-sparged with nitrogen gas at the time of

sampling.

RESULTS AND DISCUSSION

Three different designs for production of lactate were

selected based upon the OptKnock calculations: (1) pta-

adhE double deletion strain, (2) pta-pfk double deletion

strain, and (3) pta-adhE-pfk-glk quadruple deletion strain

(Fig. 1b). While the pta-adhE design is an intuitively logical

design that removes pathways for secretion of alternate by-

products, deletion of pfk and glk was non-intuitive. Deletion

of pfkwas computationally suggested to promote secretion of

lactate by forcing a rerouting of fluxes through the Entner-

Doudoroff pathway and pentose phosphate pathway thus

increasing the supply of of NADH and pyruvate. The deletion

of glk was computationally selected to ensure that the

phosphotransferase system (PTS), which converts phosphoe-

nolpyruvate to pyruvate, was maximally utilized for glucose

uptake as deletion of pfk causes a switch from PTS to

glucokinase as the main means of glucose phosphorylation

(Roehl and Vinopal, 1976). Both NADH and pyruvate are

necessary reactants for production of lactate through lactate

dehydrogenase.

Although the OptKnock framework was applied to the

iJE660 model (Edwards and Palsson, 2000), an updated E.

coli stoichiometric model, iJR904 (Reed et al., 2003), has

since been published based on more recent annotation

information as well as biochemical literature. The newer

model includes 904 genes that encode proteins which

catalyze 931 unique reactions. The model iJR904 has been

tested against iJE660 and exhibited improved predictive

power in a number of growth conditions that have been

experimentally verified. Accordingly, the iJR904 model has

replaced the older version iJE660 for all calculations per-

taining to this work. It should be noted, however, that the

predicted phenotype of the pta-pfk strain showed large

changes when calculated using the iJR904 model as

compared to initial simulations with the iJE660 model. In

this instance, the newer model contradicts the original strain

design predictions by suggesting that the growth rate and

lactic acid production rate for this strain are not directly

coupled to one another. Both models anticipate coupled cell

growth and lactic acid production for the pta-adhE and pta-

adhE-pfk-glk designs.

Prior to experimental implementation, it was decided that

only the major isozyme, pfkA, that accounts for approxi-

mately 90% of the phosphofructokinase activity in E. coli

(Blangy et al., 1968) would be deleted from the latter two

designs as deletion of both pfkA and pfkB is lethal to E. coli

(Daldal and Fraenkel, 1981; Vinopal and Fraenkel, 1975).

These three designs were then constructed from the wild-type

K12 MG1655 E. coli strain and subjected to adaptive

evolution under anaerobic conditions for 60 days at 378C in

glucose minimal medium. Subjection of each strain to

adaptive evolution was intended to increase the growth rate of

each strain which should concurrently increase the lactate

secretion rate (as the two functions are designed to be directly

coupled) and also to allow each strain to refine its own

metabolic functionality in response to the introduced gene

deletions.

Approximately 1,000 generations of growth were

achieved in the 60 day period of adaptive evolution (�900

generations for the pta-adhE strains and �1100 generations

for the pta-pfk and pta-adhE-pfk-glk strains). Independent

parallel evolution cultures of each design were conducted

(5 pta-adhE cultures, 3 pta-pfk cultures, and 3 pta-adhE-pfk-

glk cultures). Each strain was tested for growth rate, glucose

uptake rate, and by-product secretion at 10-day intervals

during the course of adaptive. A compilation of these

measurements for each individual evolution strain is shown

in Table I. Average values for the phenotype measurements of

growth rate (1/h), glucose uptake rate (mmol/g-DW.h), and

lactate secretion rate (mmol/g-DW.h) for the pta-adhE

double deletion strains (Fig. 2), the pta-pfk double deletion

strains (Fig. 3), and the pta-adhE-pfk-glk quadruple deletion

strains (Fig. 4) are shown with different computational

solution spaces corresponding to the different glucose uptake

rates found throughout evolution. Direct coupling of lactic

acid secretion to growth rate is computationally predicted in

the pta-adhE and pta-pfk-glk-adhE computational solution

spaces where growth at the higher growth rates cannot be

achieved without at least a minimum amount of lactic acid

secretion. Calculation of the pta-pfk design with the most

recentE. colimodel was not predicted to strictly couple lactic

acid secretion to growth with only strict coupling occurring

upon additional deletion of glk and adhE.

By measuring the growth rates, lactic acid secretion rates,

and glucose uptake rates, the experimental phenotypes could

be directly compared to the computationally predicted

solution spaces for each design. Both the pta-adhE strains

(Fig. 2a) and the pta-pfk strains (Fig. 3a) showed good

agreement with the computationally determined solution

spaces. The pta-adhE-pfk-glk strains (Fig. 4a) consistently

exhibited faster growth rates experimentally than were

predicted computationally though the lactate secretion rates

did fall within the computationally predicted range.
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In all strains, increases in growth rate occurred over the

course of adaptive evolution. The pta-adhE strains showed an

average increase in growth rate of 21% (Fig. 2a), the pta-pfk

strains had an average growth rate increase of 133% (Fig. 3a),

and the pta-adhE-pfk-glk strains showed an average growth

rate increase of 75% (Fig. 4a). One of the most important

criteria used for selecting the deletion designs was that the

design should directly couple lactic acid secretion with

growth rate such that an increase in growth rate would result

in an increase in the lactic acid secretion rate meaning that the

growth and secretion objectives were directly stoichiome-

trically coupled. This coupling was shown to be true for all

three constructed designs as increases in lactic acid secretion

were observed concurrently with the increases in growth rate.

The pta-adhE strains showed an average increase in secretion

rate of 25% (Fig. 2a), the pta-pfk strains averaged an increase

in lactic acid secretion of 73% (Fig. 3a), and the pta-adhE-

pfk-glk strains showed an average increase of 55% (Fig. 4a).

Although all evolved strains showed an increase in lactic

acid secretion rate over the course of adaptive evolution, the

Table I. Phenotype measurements for individual strains on 2 g/L glucose minimal medium with designed evolution strains designated by deleted genes.

Strain

Min

GR (1/h)

Max

GR (1/h)

Min lactate titer

(g/L)

Max lactate

titer (g/L)

Min lactate secretion

rate (mmol/g-DW.h)

Max lactate secretion

rate (mmol/g-DW.h)

Unevolved wild-type 0.48 0.0 0.0

pta-adhE 1 0.19 0.25 1.25 1.66 22.9 30.6

pta-adhE 2 0.19 0.25 1.25 1.75 20.5 30.0

pta-adhE 3 0.19 0.28 1.25 1.67 22.8 34.9

pta-adhE 4 0.18 0.26 1.25 1.69 22.1 30.6

pta-adhE 5 0.16 0.24 1.25 1.66 17.0 31.6

pta-pfk 1 0.09 0.26 0.91 1.32 8.2 16.6

pta-pfk 2 0.09 0.26 0.90 1.32 8.2 20.2

pta-pfk 3 0.09 0.26 0.85 1.32 8.2 17.7

pta-adhE-pfk-glk 1 0.11 0.24 0.88 1.32 9.6 17.4

pta-adhE-pfk-glk 2 0.12 0.25 0.87 1.32 10.5 18.6

pta-adhE-pfk-glk 3 0.12 0.26 0.87 1.32 10.6 19.7

Minimum (Min) and maximum (Max) values for each parameter are the minimum and maximum values occurring for a given strain throughout the course of
evolution. Note: main by-products of wild-type strain under anaerobic growth are acetate, formate, and ethanol. Error of less than 5% in all parameters was
determined through replicate testing.

Figure 2. Phenotype of pta-adhEdeletion strains during adaptive evolution. a: Average values of growth rate (1/h), lactate secretion rate (mmol/g-DW.h), and

glucose uptake rate (GUR, mmol/g-DW.h) are shown every 10 days of evolution on computationally predicted solution spaces that are calculated based upon the

experimental glucose uptake rate. Colors of experimental points match the correspondingly colored solution space calculated using measured glucose uptake

rates. Variance between the independently evolved strains is indicated by the base and height of each point. b: Maximum lactate titer (g/L) and glucose uptake

rate over the course of adaptive evolution. Error bars indicate variance between the independently evolved strains. c: Proportions of all measured by-products (%

of total by-products) over the course of adaptive evolution.
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overall lactic acid titer did not increase for all strains. The

pta-adhE strains did exhibit an increase (�35%) in lactic acid

titer (Fig. 2b) with a final maximum concentration of 1.69 g/

L. The increase in lactic acid titer for this strain was largely

attributable to the decrease in secretion of other secondary

by-products such as formate, malate, and succinate (Fig. 2c).

Both the pta-pfk strains and the pta-adhE-pfk-glk strains

showed decreases in lactic acid titer at the end of adaptive

evolution to final maximum concentrations of 0.89 g/L

(Fig. 3b) and 0.87 g/L (Fig. 4b), respectively. In both cases,

Figure 3. Phenotype of pta-pfk deletion strains during adaptive evolution. a: Average values of growth rate (1/h), lactate secretion rate (mmol/g-DW.h), and

glucose uptake rate (GUR, mmol/g-DW.h) are shown every 10 days of evolution on computationally predicted solution spaces that are calculated based upon the

experimental glucose uptake rate. Colors of experimental points match the correspondingly colored solution space calculated using measured glucose uptake

rates. Variance between the independently evolved strains is indicated by the base and height of each point. b: Maximum lactate titer (g/L) and glucose uptake

rate over the course of adaptive evolution. Error bars indicate variance between the independently evolved strains. c: Proportions of all measured by-products (%

of total by-products) over the course of adaptive evolution.

Figure 4. Phenotype of pta-adhE-pfk-glk deletion strains during adaptive evolution. a: Average values of growth rate (1/h), lactate secretion rate (mmol/g-

DW.h), and glucose uptake rate (GUR, mmol/g-DW.h) are shown every 10 days of evolution on computationally predicted solution spaces that are calculated

based upon the experimental glucose uptake rate. Colors of experimental points match the correspondingly colored solution space calculated using measured

glucose uptake rates. Variance between the independently evolved strains is indicated by the base and height of each point. b: Maximum lactate titer (g/L) and

glucose uptake rate over the course of adaptive evolution. Error bars indicate variance between the independently evolved strains. c: Proportions of all measured

by-products (% of total by-products) over the course of adaptive evolution.
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secondary by-product secretion increased (Figs. 3c and 4c)

with formate being secreted as the most abundant secondary

by-product. In all cases, the by-product secretion profiles

stabilized after approximately 20 days of adaptive evolution

with all strains showing sustained elevated lactic acid titers

throughout the course of adaptive evolution over the wild-

type strain (secretes trace amounts of lactic acid).

Overall, significant secretion of lactic acid for the duration

of adaptive evolution and increases in growth rate and lactic

acid secretion rate throughout evolution were observed for all

evolved strains. Through comparison of the different designs,

the pfkA gene deletion appeared to have a dominant effect on

the cellular phenotype, such that the phenotype of the

pta-pfk-glk-adhE deletion strain more closely resembled the

pta-pfk deletion strain rather than the pta-adhE deletion

strain. It has been shown that deletion of the pfk gene causes

intracellular accumulation of fructose 6-phosphate which

causes the degradation of ptsG mRNA, thus inhibiting

glucose transport (Morita et al., 2003). Given this considera-

tion and the apparent dominating effect of the gene deletion,

it is suggested that future strain designs should avoid deletion

of the pfk gene if alternate deletion strategies can be found.

While engineered strains of E. coli already exist that

produce lactic acid (Chang et al., 1999; Dien et al., 2001;

Zhou et al., 2003) and one of the designs here (pta-adhE

mutant) has been previously described (Gupta and Clark,

1989), the goal of this study was to experimentally test

computationally predicted strain designs calculated from a

genome-scale metabolic model using the OptKnock algo-

rithm. For the designs generated, it was shown that this

combination of computational approaches can prospectively

and effectively calculate strain designs for over-production

of lactic acid. Adaptive evolution of the different designed

strains showed that: (1) the computationally predicted

phenotypes are experimentally reproducible and consistent,

(2) the process of adaptive evolution leads to increased

secretion rates of a target metabolite and can lead to improved

product titers, and (3) the generation of stable production

strains can be achieved through this method. Overall, all

11 evolved strains exhibited secretion profiles that supported

the OptKnock hypothesis that metabolite over-production

can be stoichiometrically coupled to biomass generation.

This was demonstrated through the increased lactic acid sec-

retion rates that were found concurrent with increased growth

rates during evolution. While these examples successfully

coupled these two objectives, evolution did not always lead to

increased product titer. This may be attributed to specific

evolutionary changes and transcriptional regulation that were

not accounted for in this study. Thus, the described method

represents a systems-level approach to metabolic engineer-

ing that, in the future and through further refinement, has the

potential to be extended to applications involving over-

production of different metabolites, gene additions, and also

different organisms.
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