PHYSICAL REVIEW E, VOLUME 65, 031918

Dynamic analysis of a parasite population model

G. J. Sibon&
Universidad Tecnolgica Nacional, 1179 Buenos Aires, Argentina

C. A. Condat
CONICET and FaMAF, Universidad Nacional de 1doba, Ciudad Universitaria, 5000 @doba, Argentina
and Department of Physics, University of Puerto Rico, Magag®uerto Rico 00681
(Received 5 June 2001; published 6 March 2002

We study the dynamics of a model that describes the competitive interaction between an invadingapecies
parasit¢ and its antibodies in an living being. This model was recently used to examine the dynamical
competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas’ disease. Depend-
ing on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to
healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with
the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under
certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a
retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive
advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated
decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle
for the antibody-parasite population phase trajectories.
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I. INTRODUCTION heart disorderd7]. Parasite-specific antibodies have been

shown to control the infection in experimental models

In a recent review, Perelson and Weisbuch described hol8—10l. Attempts to improve the condition of affected popu-
scientists trained in physics and mathematics can activel{ptions have motivated efforts to determine the molecular
contribute to the field of theoretical immunology]. Immu- mechanisms involved in the parasite-host interaction, and

nologists have had great success in understanding many S?arches for trypanocidal drugs and cardiac restoration pro-

the molecules and cells of the immune system, but they faﬁ:edures.

. b he behavior of | llecti The model developed in Rdf5] facilitates the identifica-
to answer questions about the behavior of large collections gf,, a4 quantitative assessment of the relevant parameters

cells and molecules. They remark that dynamics is an are@,q\ved in the parasitic infection and the generation of the
well appreciated by physicists but one in which little work i jymune response. Although at first sight it has some features
being done in immunology. Because of difficulties in collect-jn common with the Lotka-Volterra predator-prey moftkd]
ing data from one animal at many time points, dynamic ex-and with epidemic modelglL2], it is actually much closer to
periments are rarely done. It is therefore difficult to under-the models for the immune reaction to viral infectidds).
stand why the immune system operates sometimes in Wwhile in a predator-prey model, the immediate result of the
steady state, or oscillates, or is chaotic. One goal of modelingrey destruction is a strengthening of the predator popula-
in immunology is to deduce microscopic properties of thetion, in the parasite invasion model the interaction between
system from the properties of their elementary componentparasites and antibodies results in the simultaneous removal
and of their interactions, as it is done in statistical mechanicsof both species. As we shall see, the corresponding change of
Indeed, the contribution to the analysis of the interactiorsign in a coupling term prevents the existence of closed
between the immune system and pathogen agents has fglane phase trajectories and leads to very different outcomes.
cently found a place in the physics literatiide-5|. The model provides a good description of experimental
In this context we have developed a model for the comdata for the Chagas diseddel]. In addition, we will see that
petitive interaction between an invading species and its antit can describe some important properties of parasite-
bodies, which is directly applicable to Chagas’ diseg8le  antibody systems, such as the presence of time delays in
This is a widespread endemic disease in many Latinantibody activation and the action of parasite-generated de-
American countries, with a total exposed population esti-coys, which may modify the efficiency of the immune sys-
mated at 60 million. It is caused by the paraditgpanosoma  tem.
cruziand transmitted by a bloodsucking bug of the subfamily ~ The effect of time delays on population models has been
Triatominae by blood transfusion. Survivors of the acutecarefully studied[11]. In immunology, delays have been
phase of the disease have a positive serologyforuzi;the  shown to have drastic effects. For instance, Buric and co-
disease enters into a latent phase in which there are no clinivorkers have described how a delay in the immune response
cal signs related to the infection. Parasite invasion is assocean introduce chaotic behavior into the Mayer modid].
ated with strong antibody and cellular responses and sevei#e will show that, although in most cases time delays have
no effect after a short transient, the outcome of the parasite
invasion can be sometimes switched from host death to sur-
*Email address: gsibona@yahoo.com vival by a suitable shortening of the delay.
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T. cruzi may shed segments that act as decoys for the N
antibodies[16,17. Decoys can affect the efficiency of the ns( K— 2, ajdie
immune system and may change the infection outcome. We =1
will investigate the conditions that must be satisfied by thean d
model parameters if the decoys are indeed to favor the para-
site invasion; this will be revealed by shifts of the boundaries N N
between the parameter regions corresponding to host death, nsz ¥i— kNg— 2
host healing, and chronic disease. i=1 i=1

The main purpose of this paper is to present an analysis of ]
the dynamic properties of the model. We will examine inWhere the subscrigt labels the steady state. Hence the two
detail the properties of the time-dependent solutions, includPossibilities for the steady-state parasite populationrare
ing the effect of delays and of the introduction of decoys. =0 and

The rest of this paper is organized as follows: In Sec. II N Z1N
we review the model, whose steady-state solutions are dis- =[S 5 D

SSlg e &

=0 (3

is i0 =0, (4)

i

dis—qjp

T

: ®)

cussed in Sec. lll, where we also present phase diagrams
describing the infection outcome for the single antibody
problem in terms of the parasite- and antibody-generation If the initial antibody population is very low, we may take
rates. The dynamic properties, including the effects of timea;;=0. In such a case the condition for a finite final parasite
delays on antibody activation, are analyzed in Sec. IVpopulation is

whereas the influence of decoys is examined in Sec. V. The

paper ends with a short discussion of possible model gener- N
alizations. ;1 Vi K. (6)
Il. THE MODEL The analysis of the solutions is greatly facilitated if we

first consider the outcomes for a single antibody spdéés

_To model the parasitemia evolution we adopt as a pardg e analyze the asymptotid =) regime, we then find
digm Chagas’ disease. In this disease, parasite mtroducno[rﬂree different cases

usually stimulates population increases in several antibody
specied 14]. If we consider thalN antibody species interact
with the parasite population(t), the evolution ofn(t) is
described by

(I) Chronic disease: Ify>«k>aag (or ag<ay), i.e., for
strong induced antibody formation and low removal effi-
ciency, the system reaches a long-time steady state described

by

K—ady K
ag=—. (7)

N
n(t)=xn(t)—n(t) >, xa(t), (1) Ne=———
i=1 at(y—kK) a
where the first term represents the asexual reproduction of The stability of the steady-state solutions was proved us-
the parasites and the second term represents their interactioing the Routh-Hurwitz criteriofi11].
with the antibodies. The coefficiemt controls the parasite (I) Healing: If y>« and aay>«, corresponding to
reproduction rateg; is the population of theth antibody strong induced antibody formation and high removal effi-
species, andy; defines the likelihood of antibody-parasite ciency, the antibody number goes back asymptotically to its
removal upon an encounter. initial value a,, while the parasite number goes to zero, i.e.,

Assuming that the direct interaction between antibodythe system returns to the initial conditions.
species is negligible, the equation for the evolution of the (lll) Host death: Ify<, i.e., for weak induced antibody
population of theith antibody species can be written as fol- formation, the antibodies, regardless of their efficiency, are
lows: not created fast enough so as to control the infection.

A special case deserves separate consideratiomajf
a;(t)=yn(t)— e;a;(t)n(t)— (1/m)[a(t)—aj0], (20 >« and the initial inoculation is smallho<ng, a highly
efficient, even if slowly reproducing, antibody population
where the coefficient, controls the induced antibody cre- can dispose off the invaders, leading to a return to the initial
ation. The initial conditiona;(0)=a;, corresponds to each conditions, i.e., to healing. This is remarkable, because it
species having its equilibrium population in the absence ofndicates that the infection outcome may depend on the in-
infection andr represents the intrinsic antibody lifetime. ~ oculation size. The existence of this subcase, which we label
llib, can be explained by the following lemma.

Lemma If y<k<aay, the inequalityny>ng is a neces-
sary condition for host death.

By setting the time derivatives in Eqgd) and(2) equal to Proof. For simplicity, we takex to be a constant. Under
zero and adding thé&\ algebraic equations resulting from the specified conditions, the parasite population must ini-
Egs. (2), we obtain a set of equations defining the steadytially decrease. However, host death implies that it must
state populations, grow at long times, so that it has to go through a minimum

Ill. STEADY-STATE PROPERTIES
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FIG. 1. Phase diagram describing the outcome of the parasite FIG. 2. Dependence of the location of the boundary between
infection in terms of the parasitecf and antibody §) generation regions Ill and Illb on the intrinsic antibody lifetime for the
rates. The location of the boundary between cases Il and Illb devalues detailed in the figure. The shape of this boundary obeys Eq.
pends on the siza, of the original infective population. The aster- (9).

isk corresponds to the point in the phase diagram analyzed in Fig. 3. . . . . .
Here, we chos@,=7=0.1 anda=40. Of course, this equation does not imply a linear relation be-

tweeny and x becausen(t,,,) is a function ofk. This is
. . . seen in Fig. 2, where we plot the boundary for several values
N(tmin) at Some intermediate timg,,. The extremum con- of the antibody intrinsic lifetimer. According to these re-

dition n(tyy) =0 implies thata(ty,)=r/a. The extremum is  sults, for an invading force of fixed size, a shortening of the

a minimum if antibody lifetime favors healing. This apparently surprising
behavior can be explained as follows: For short-lifetime an-
é°n : ) : tibodies, the immune system of a parasite-free host generates
O<F = KkN—aNn(typ)a—aa(tmp)n antibodies at a high rate to maintain a constant population.

Therefore, the antibody creation induced by the parasite in-
) vasion represents a minor deviation from the steady state. In
=—an(tmina(tmin) (8) the opposite case, i.e. for large values ofthe antibody
production reacts slowly to a decreaseajrand the parasite

i.e., if a(t,;)<0. By using Eq(2), we see that this condition population can grow without control. In particular, for “im-
is equivalent to demanding(t,;)>ns. Hence, ifng*n mortal” antibodies, i.e., for those that can be removed only
min. S* ) S

the parasite population will decrease and eventually disap?y Interaction with parasites, the boundary between regions
pear, resulting in host healing. Il and IlIb coincides with they=« line: in this case the

In the special casa,=0, a steady state with a finite, only relevant criterion for infection control is whether
occurs wheny> «. Otherwise the infection cannot be con- ~ K Or not. . . :
trolled, whatever the antibodies’ avidity. The properties of the parasite population corresponding to

From the preceding discussion we see that the outcome G Particular point in the phase diagram are shown in Fig. 3. If
the parasitic invasion does not depend on the size of thH€ initial parasite population is smaller tha, the humoral
invading population, except for the emergence of case IlIbSYStém controls the infection and the parasite population de-
We can therefore construct a phase diagram in the plang/€ases monotonically. ffo>ns, the parasite population ini-
defined by the growth rateg and . This is done in Fig. 1, tally decreases, reaching a minimum at a timg, which is
where the boundary between the domains corresponding % Sharply decreasing function of [see Fig. 8)]. From Fig.
cases IIl and Illb was found numerically for two different 3(P), we see that the difference between the initial population
initial parasite populations. and that at the minimum(t,,,) is substantial only ifng is

An analysis similar to the one used to prove the lemméf0Se tons.
shows that the boundary between the regions corresponding
to cases Ill and IlIb is described by the equation

1
yZ[l—l—

tmin

IV. DYNAMICS

A. General properties
3o

9) The dynamic properties of predator-prey models are well

K— .
TN (tmin) TN(tmin) known [11,18. In Volterra’s model, for example, the con-

031918-3



G. J. SIBONAAND C. A. CONDAT PHYSICAL REVIEW E55 031918

13 any given parameter set, we assign to each value of the time
(2) a point in the @,n) plane. By joining these points we then
draw a trajectory describing the system evolution for each set
of initial conditions. Phase portraits can also be built
automatically by using mathematical software such as
MATHEMATICA or MAPLE. We can draw some general conclu-
[ sions about the dynamics of our model by looking at the
. phase portraits presented in Fig. 4.
. In case |, the phase trajectories in the plaagnf [see
Fig. 4(a)] exhibit closed loops ending at a fixed point corre-
sponding to the steady state. This means that both popula-
tions oscillate as functions of time, which can be understood
as follows: because of the strong growth rate and low avidity
of the antibodies, botin(t) anda(t) grow sharply at short
° times. As a result, there is a rapid increase in the negative
parasite-antibody encounter term, which induces a decrease
b 10 in both populations. The nonlinearity of the coupling term
n, (arb. units) generates an interesting phenomenon: the simultaneous de-
crease in the antibody and parasite populations eventually
causes the right-hand side of E@) to become positive.
(b) Consequently, the parasite population starts increasing again,
which triggers an upturn in the antibody population. We can
see from Eq(1), for N=1, that theT. cruzi population has
either a maximum or a minimum at all timgssuch that the
equation

oSO PN — |

0.1+

(arb. units)

t .
min

0.01

0.0001

o
pry
-
@«

o
e
N
Ll
o SEe T

k—aa(t)=0 (10

is satisfied.

In case I, because of the high creation rate and strong
efficiency of the antibodies, the parasite population goes
down to zero at long times. Although the parasite number
always decays monotonically, the antibody number exhibits
* e two different intermediate-time behaviors, depending on the
value of «: for a>vyl/ay, a(t) goes through a minimum at
T A L intermediate times, whereas fax y/a, the antibody popu-

1 10 lation initially grows, passing through a maximum, before

n, (arb. units) reaching the final statgsee Fig. 4b)]. An increase in the
initial number of parasites has no qualitative effects beyond a

FIG. 3. Influence of inoculation size on the properties of theshort-time transient.
parasite population corresponding to the point3, y=2 of the In case Il the parasite population grows monotonically at
phase diagram in Fig. 1a) Time at which the parasite population |ong times due to fast replication while the antibody number
reaches a minimurfinfection onset occurs &t=0). (b) Difference goes to a finite constant. A large value mfequires thaty

between initial and minimum parasite populations. Eott,,, the — aa; therefore, the asymptotic value of the antibody num-
parasite population grows monotonicallynif<ng=0.25, the para- ber is

site population is annihilated.

0.007 -}
0.1

= 3 U
®

w

Y
stant of motion and the ensuing closed orbits arise because as=a(t=x»)= et (11)
the interaction terms have opposite signs in the equations for

the predator and the prey: the immediate result of the The long-time antibody population is now determined by
predator-prey interaction is that the predator population inthe avidity and the rate of antibody creation and not by the

creases while the prey population decreafE3|. As re-  rate of parasite creation, as in case |. The parasite population
marked in the Introduction, no closed orbits occur in ourgrows exponentially,

parasite invasion model. There is no constant of motion be-
cause the populations dfoth species are reduced by the n(t—o)~exd (k—y)t]. (12
interaction. .

Time-dependent solutions to Eq4) and (2) are easy to Since n(t=0)<0, n(t) must have an intermediate-time
obtain numerically using a standard Euler method. A particuminimum before going to its asymptotic value. This is ob-
larly informative way of presenting these solutions is to con-served in Fig. ), which also shows that the initial condi-
struct phase portraits: onedt) andn(t) are calculated for tion ag> «/a@, ng<ng leads to case lliifhealing.
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25 FIG. 5. Borderline casg= k= 3. Phase portrait fo=0.4 and
] 7=10. If k>aya the phase trajectories converge towardsa,»),
20 ] whereas if«<aya they have their attractor atf,).
G ] Next, we consider the borderline cage- . By setting
g 157 a(t)=x/a+R(t), we see that Eq$1) and(2) can be rewrit-
= ] ten as
1.0 4 '
] n(t)=—aR(t)Nn(t), (13
05
] and
0-0-""|-“'\"“|""""'\/‘“"\ .
00 05 10 15 20 25 30 a(t)=(lr)[ag— x/la—R(t)]— aR(t)n(t), (14
a (Antibody)

respectively. At very short timesa(t)~n(t)=—(aa,
1.0

R L S — k)Ng. Both populations vary linearly, with the same slope.
1(©) The antibody number tends towargéa. Under the condi-
08 tion amn>1, Eqs.(13) and(14) are approximately solved by
o writing R(t) =A/n(t), with A= (1/a7)(ag— «/ ). In this re-
1 gime, a(t)= k/a andn(t)=(«/a—ap)/ 7. If k<agya (at the
06 frontier of case I, n(t) decreases linearly untitrn~1 and
] the approximation above breaks down. Theft) grows
] again towards its asymptotic valus, while the parasite

04 1 population n(t) decreases exponentially, as Ppxf«
—ga)t]. If k>aga (at the frontier of case | aboyen(t)
grows and the conditioa7n>1 is always satisfied. Conse-

»n (Parasite)

021 & quently, the parasite population will continue to grow lin-
( . early while the antibody population will tend te/ «.
0.0 . / Figure 5 exhibits the two completely different outcomes

0 15 a0 of the borderliney=« problem. The curves on the left
a (Antibody) (smallag) correspond to the frontier between cases | and llI,
while those on the right correspond to the frontier between
cases Il and Ill. In agreement with the discussion above, at

FIG. 4. Typical phase portraits for the antibody-parasite popula- . . . . .
tions. In all casesr=10 andx=3. (a) Case l,a=0.4 andy=4. short times, phase trajectories are parallel straight lines of

There is an oscillatory convergence towards fi)=(7.5,0.55)  unit slope, for parasite and antibody numbers both depend
(chronic disease (b) Case Il, =2 and y=4. Convergence to- linearly on time. At later times, atho< «/« trajectories turn
wards (0,2 (healing. (c) Case Ill, =2 andy=2. Evolution to-  Sharply up: whilea(t) goes tox/a, n(t) grows linearly with
wards (1) (death. However, ifa,>«/a=1.5 andno<ng, we  Slope (/a—ap)/7. For ay>«/ea, i.e., at the frontier be-
are in case llihealing. tween cases Il and llla(t) approachex/« at intermediate
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0.05 where phase portraits for a single antibody species are plot-
] ted. The phase trajectories undergo a sudden change in slope
at the time the antibody molecules become efficient. For
short-time delays, the trajectories converge towards the
“healing” attractor (ay,0), whereas for long delays the tra-
jectories tend to (@) (patient death

In principle, antibody production and parasite growth
could depend on the availability of some essential nutrients.
If this were the case, we should introduce a new variable
v(t), the amount of available critical nutrient, whose time
variation would depend on the parasite number and on the

n (Parasite)

1|— 6=1 / antibody generation ratee. The antibody generation rate
001 | |-——-6=06 i/ would itself depend on the instantaneous value ahd per-
1] =05 { haps even on its history. A long delay would tend to impair
1-7" 0=0 ""'\‘*‘-\.\ the immune system through a decreasey.in
000 +————F———— T F—_——
0.80 0.85 0.90 0.95 1.00 C. Oscillations
a (Antibody) The oscillations appearing in case | deserve some further

FIG. 6. Phase trajectories for the indicated time delays. FOIconsideratior_l. Simulations show that after an initial Sharp
small delays, they converge to the attractag,0) (healing, while ~ d€cay, the time difference between successive extrema in
for long delays they converge to ¢0), (death. Here ap=1, n, a(t_) stablllz_es due to the gentleness of thg) o_SC|IIat|ons,
=0.04, a=4.6, 7=1/0.12, k=4, andy=3. which provide a smooth feedback to the antibody number.

We can analyze this behavior through a linearization of the

times, whilen(t) decreases linearly. Finally, whenis so evolution equations abowt; andns, writing

small that the conditiorkn>1 is no longer satisfieda(t) n(t)=ng+N(t) with [N(t)|<ng,
approaches its asymptotic valuayj while n(t) decays ex-
ponentially to zero. a(t)=ag+A(t) with |A(t)|<as.
B. Delays The system of Eq91) and(2) becomes, to first order
Next, we consider the effects of a retardation in the im- N=—andA, (16)

mune system reaction to the invasi¢as it occurs in the

Chagas infectiori6]). The retardation can be taken into ac- .

count by introducing a time delaj11,2Q 6; in the term A=(y=Kr)N~—
representing antibody generation in E2), which now reads

A. (17)

—+an
T S

éi(t)= Yn(t=6)— aa () — (1) [a(t) —aig]. We now define the parameters

7= 2700, 19
The equation for the parasite evolution remains unchanged. YT %
It was recently shown that the introduction of a time delay . . 2
in the immune response model of Mayer yields chaotic be- wZZK @8 | YT ¥4 ) (19)
havior [15]. This situation does not occur in our model; in T 27(y— k)
most cases the time delay merely introduces a transient stage ) , ,
in which the parasites reproduce freely. After a tifethe If ©*<0, the pair of Eqs(16) and(17) has solutions that

system behaves as if it had started with an initial parasité€nd expongntially to their asymptotic values. More interest-
population n(6,). The absence of delay-induced drastic/Nd iS thew®>0 case, corresponding to largevalues, for
changes is not surprising, since we have already seen that tH&'ich we obtain the solutions

different outcomes of the parasite-antibody competition o

model do not depend on the initial parasite population, but A(t)=e""TAscog ot~ @), (20
only on the constant model parameters, which remain un-

changed with the introduction of the delay. ¥ k<aay, _ s .
however, the parasite can use the delay to gain a definitive N(t)=~ 1+ (wT)2 Adcodwt=g) —wTsin(wt = ¢)],
advantage, because the location of the phase boundary be- (21)
tween cases Il and lllb does depend of By effectively

increasing the parasite population at the time the antibodieswhere Ay and ¢ are constants that depend on the initial
are activated, the delay can induce a switch from case lllfpopulations. The parametdris the characteristic time re-
(surviva) to case lll(death. This is exemplified in Fig. 6 quired to reach the stationary population.

—t/T
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30 served in theT. cruziproblem[16], where the parasite plays
. the role of the invading species. The effect of these decoys
—~ ] on the antibody and parasite populations can be quite com-
£ 20 7 (\/\" lex, b they not only in itate antibody molecules
2 ] plex, because they not only incapacitate y . ,
= ] but they may also induce an extra activation of the antibody
;5_, 10 generating cells. This activation could, in principle, work in
s ] two different ways:(i) decoys stimulate the production of
] (2) antibodies harmless to the invader, and then weaken the im-
o777 mune response by decreasing the amount of available spe-
0 5 10 15 20 cific antigen(since antibody-producing cells have a limited
20 t (arb. units) amount of amino acids to build them, an increase in the
B ] diversity must lower the specific antigen populajiofi) de-
2 10 coys stimulate the production of specific antigéihss would
E ] occur if the immune system cannot distinguish between a
g 0 segment shed by the invader and the invading organism it-
= E self). The first case could be accounted for by suitably reduc-
%'10 3 ing the antibody generation rate. In the second case, it is not
'@"_20 3 possible to ascertaia priori the outcome of the decoy ac-
S ] (b) tion. We will find the condition that the parameters must
T v 1 r v 1 Tt 7 r7 . .
0 5 10 15 20 satisfy in order to ensure that the decoys operate as an effec-
t (arb. units) tive self-defense mechanism for the invaders.
120 3 In case(i) the effect of decoy action is quite straightfor-
] ward (to decreasey); for this reason, we will analyze only
@ 100 3 case(ii) in depth. When decoys are introduced in our model,
= 80—; the parasite evolution equation is not modified, but we have
g 60 3 to add a new equation for the decoy populatiin). In the
E 40 - single antibody problem we have
= ]
22‘5 (c) d(t) = kgn(t) — aga(t)d(t), (22)
T LN L L L L R L L L L B L
0 1 2 3 4 5 where k4 is the decoy production rate anely defines the
@2 (arb. units) likelihood of antibody-decoy removal upon an encounter.

Because of the presence of the decoys the antibody equation

FIG. 7. Evolution of the antibody populatioga) Its full time acquires an extra term

dependenceb) Regular oscillations exhibited once the exponential
decay is extractedc) Fourier spectrum of the antibody population. Cn
The parameter values are,=0.01, n,=0.1, =1, 7=0.8, « a(t)=(1/7)[ao—a(t)]+[y— ca(t)In(t)

=20, andy=40. +[yg— aga(t)]d(t), (23)

This behavior is exemplified in Fig. 7. The regularity of \yhere the coefficienyy controls the decoy-induced antibody
the sinusoidal oscillations in the antibody number becomegoduction. Following the same procedure as in Sec. Il we

evident when the exponential factor is extracfede Fig. fing the steady-state populations in the chronic case to be
7(b)]. This stabilized oscillatory behavior can be studied by

using the fast Fourier transform. The resulting spectrum,
shown in Fig. Tc), has a unique peak corresponding pre- as=
cisely to the frequency predicted by E39).

ol (24)

o

(kq!7)(k—@aga)

V. DECOYS: AN EFFECTIVE SELF-DEFENSE ds= , (25
MECHANISM? (7= )@t (yqa—rag)kg
Competition is a common occurrence in biological sys-and
tems, be it at the moleculd21] or the macroscopi¢11]
levels. It is often the case that an additional species modifies _ag ko ag(klaT)(k—aea) (26)
the action of a predator against a specific prey. This competi- ST kg ° (y—K)agk+(yga—kag) Ky

tor species may redud@?2] or increasd 23] the probability

of extinction of the prey. Of special interest to us is the case The introduction of the decoys modifies the conditions
when the “competitor species” is an invader-generated defeading to the different evolution cases mentioned in Sec. .
coy that confounds the immune system. Decoy generatioAgain, the stability of the steady-state solutions was proved
may be a necessary by-product of the invader activity, or iusing the Routh-Hurwitz criteriofll]. This criterion indi-
may be part of a self-defense mechanism. It has been olzates that case I(lhost deathoccurs if

031918-7



G. J. SIBONAAND C. A. CONDAT PHYSICAL REVIEW E55 031918

10 7 Case the decoy production favors healing. From condit{@), it

(a) (Chronic Discasc) is clear that for

8 J e ng=1 K 4o
1 d( 14 Vd

—— ny=02 - k<o -1, (28)

QagKqg

6 Casell (Healing) P the parasite population will disappear evenf=0 (no
1 - parasite-induced antibody creatjofihe reason is that, under
‘ e these conditions, decoy generation favors antibody produc-
e tion without substantially neutralizing the antibody popula-
tion. By comparing the steady-state values, it is easy to see
Case I1I (Host Death) that decoy emission benefits the parasite if the condition

¥ (arb. units)

/ o
; / K>— Y4 (29

/ aqd

;== Case IIIb (Healing)

0 bt is fulfilled. If, in fact, the invader releases decoys to take

0 2 4 6 8 advantage of the immune system, it must have evolved in

« (arb. units) such a way that this inequality is satisfied. Otherwise the
invasion would not be favored. Although it may be argued
20 that calling the object a “decoy” would be a misnomer if
1 (b) K=oy inequality(29) is not satisfied, we keep the name for the sake
of descriptive unity.

A further complication arises in the analysis of the fron-
tier region between cases Il and Ill. As in the no decoy
problem, numerical analysis indicates that, if the parasite in-
oculation is small, region llighealing appears between I
and Il

The Routh-Hurwitz analysis yields a second condition,
which takes the form of a very complex inequality. For a set
of parameters defined by this inequality, no stable state can
be reached. Interestingly, numerical work shows that, for
these parameters, which embody what we call case IV, a

Case I11 population limit cycle emerges. The phase diagram for a set
(Host Death) of parameters exhibiting region 1V is shown in Fig(bs
Region IV always appears inside region |, abutting the
0 — I A =0 line and/or region llI.

0 5 10 15 A combination of the second Routh-Hurwitz condition
K (arb. units) and inequality(27) determines the following necessary con-

dition for the existence of case |V,
FIG. 8. Phase diagram for the problem with decoys for two sets

15 - Casel
(Chronic Disease)

CaseII
10 1 {(Healing)

¥ (arb. units)

Case IV
(Limit Cycle)

of parameters(a) a0=f1, d(t=0)=0, a=a4=1, 7=10, Kd=$, . agag—i- \/agaé+4aadydaé( Yd— @gdg)
and y4=2. The y=« line corresponds to the phase separation in Kg> Sy (30
the absence of decoys. The separatrix between cases | and Il tends (74— @q8o)

asymptotically toy=«k+«4. The location of the separatrix be-
tween cases Ill and lllb depends on the initial parasite populatio
ng. (b) Same parameters, except thgt=0.2, k4=10, andyy=3.

4n Fig. 9 we present a typical phase portrait for this case. We
can see that, independently of the initial conditions, the sys-
tem trajectories always end in a limit cycle.

Y<Kt Ky “;’dl’:d’ @27 V1. DISCUSSION
‘ We have extended the analysis of our model for the inter-
action between parasites and antibodies during the acute
otherwise, we are in case(thronic disease provided that phase of Chagas’ diseap@]. The dynamics of the parasite
K> aay. and antibody populations has been studied in detail, includ-
The corresponding phase diagram is presented in Figng the influence of the size of the parasite inoculation and of
8(a). For high values ok the boundary between regions Il delays in the activation of the immune system. The influence
and | or Il (healing is shifted by the presence of decoys of parasite-generated decoys has been also investigated, and
towards higher values of, favoring the parasite invasion. we have obtained a simple criterion that enables us to deter-
For small values ok, however, the border bends down and mine whether the parasite is indeed benefited by decoy emis-
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107 5 further study, is the influence of preceding infections, which

3 could impair the response to a new one, with a different
pathogen, or to vaccination. There is ample evidence that this
is the case for various infectiofig24 —26. Another problem
that could be modeled is the influence of decoys introduced
artificially to combat diseasg27].

The model presented here is particularly suitable to quan-
titatively investigate the effects of elements that modify the
competitive process between an invading agent and the im-
mune system. In this paper, we have discussed the effects of
delays and of the introduction of decoys. Another element
that deserves to be examined is the effect of noise. Noise has
been shown to have substantial influence on predator-prey
systems[28] and on epidemic modelg29]. The interplay
between delays and stochasticity is also a subject of current
. interest[30]. We are now starting an examination of the ef-

0 - fects of noise on the parasite-antibodies system.
2.0 25 3.0 35 4.0 Our model could be also applied in the fields of chemo-
a (Antibody) therapy and vaccination as a tool to help with the design of
usually expensive and time-consumiimgvivo experiments,

FIG. 9. Phase portrait for antibody and parasite population for &y performing fastn machinasimulations. The development
case IV system. Note the convergence towards a limit cycle. Heref a successful vaccine againgt cruzi is a complex en-
we took ap=2, d(t=0)=0, e=1, ay=0.1, 7=10, k=3, kg  deavor[31] and, by incorporating the action of chemo-

103 -

104 -

n (Parasite)

105 E

108 E

=1000, y=5, andy4=0.5. therapy, mathematical modeling could yield valuable predic-
sion. The presence of decoys can substantially alter the popHQnS'

lation phase diagram. Under certain conditions, a ACKNOWLEDGMENTS
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