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Dynamic analysis of a parasite population model
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We study the dynamics of a model that describes the competitive interaction between an invading species~a
parasite! and its antibodies in an living being. This model was recently used to examine the dynamical
competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas’ disease. Depend-
ing on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to
healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with
the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under
certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a
retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive
advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated
decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle
for the antibody-parasite population phase trajectories.
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ho
ve

y
fa
s
r
is

ct
ex
er
in
lin
he
n
ic
io
s

m
n

tin
st

il
t

li
o
ve

en
ls

u-
lar

and
pro-

ters
he
res

he
ula-
en
oval
e of
ed
es.

tal

ite-
s in
de-
s-

en
n
co-
nse

ve
site
sur-
I. INTRODUCTION

In a recent review, Perelson and Weisbuch described
scientists trained in physics and mathematics can acti
contribute to the field of theoretical immunology@1#. Immu-
nologists have had great success in understanding man
the molecules and cells of the immune system, but they
to answer questions about the behavior of large collection
cells and molecules. They remark that dynamics is an a
well appreciated by physicists but one in which little work
being done in immunology. Because of difficulties in colle
ing data from one animal at many time points, dynamic
periments are rarely done. It is therefore difficult to und
stand why the immune system operates sometimes
steady state, or oscillates, or is chaotic. One goal of mode
in immunology is to deduce microscopic properties of t
system from the properties of their elementary compone
and of their interactions, as it is done in statistical mechan
Indeed, the contribution to the analysis of the interact
between the immune system and pathogen agents ha
cently found a place in the physics literature@1–5#.

In this context we have developed a model for the co
petitive interaction between an invading species and its a
bodies, which is directly applicable to Chagas’ disease@6#.
This is a widespread endemic disease in many La
American countries, with a total exposed population e
mated at 60 million. It is caused by the parasiteTrypanosoma
cruzi and transmitted by a bloodsucking bug of the subfam
Triatominae by blood transfusion. Survivors of the acu
phase of the disease have a positive serology forT. cruzi; the
disease enters into a latent phase in which there are no c
cal signs related to the infection. Parasite invasion is ass
ated with strong antibody and cellular responses and se
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heart disorders@7#. Parasite-specific antibodies have be
shown to control the infection in experimental mode
@8–10#. Attempts to improve the condition of affected pop
lations have motivated efforts to determine the molecu
mechanisms involved in the parasite-host interaction,
searches for trypanocidal drugs and cardiac restoration
cedures.

The model developed in Ref.@5# facilitates the identifica-
tion and quantitative assessment of the relevant parame
involved in the parasitic infection and the generation of t
immune response. Although at first sight it has some featu
in common with the Lotka-Volterra predator-prey model@11#
and with epidemic models@12#, it is actually much closer to
the models for the immune reaction to viral infections@13#.
While in a predator-prey model, the immediate result of t
prey destruction is a strengthening of the predator pop
tion, in the parasite invasion model the interaction betwe
parasites and antibodies results in the simultaneous rem
of both species. As we shall see, the corresponding chang
sign in a coupling term prevents the existence of clos
plane phase trajectories and leads to very different outcom

The model provides a good description of experimen
data for the Chagas disease@14#. In addition, we will see that
it can describe some important properties of paras
antibody systems, such as the presence of time delay
antibody activation and the action of parasite-generated
coys, which may modify the efficiency of the immune sy
tem.

The effect of time delays on population models has be
carefully studied@11#. In immunology, delays have bee
shown to have drastic effects. For instance, Buric and
workers have described how a delay in the immune respo
can introduce chaotic behavior into the Mayer model@15#.
We will show that, although in most cases time delays ha
no effect after a short transient, the outcome of the para
invasion can be sometimes switched from host death to
vival by a suitable shortening of the delay.
©2002 The American Physical Society18-1



th
e
W

th
a
ie
ea

is
in
ud
.
. I
d
am
dy
tio
m
IV
Th
ne

r
ti
od
t

n
ti

te

d
th
l-

-
h

o

dy

o

e
ite

e

fi-
ribed

us-

ffi-
its

e.,

are

n
tial
e it
in-
bel

r
ini-
ust
m

G. J. SIBONA AND C. A. CONDAT PHYSICAL REVIEW E65 031918
T. cruzi may shed segments that act as decoys for
antibodies@16,17#. Decoys can affect the efficiency of th
immune system and may change the infection outcome.
will investigate the conditions that must be satisfied by
model parameters if the decoys are indeed to favor the p
site invasion; this will be revealed by shifts of the boundar
between the parameter regions corresponding to host d
host healing, and chronic disease.

The main purpose of this paper is to present an analys
the dynamic properties of the model. We will examine
detail the properties of the time-dependent solutions, incl
ing the effect of delays and of the introduction of decoys

The rest of this paper is organized as follows: In Sec
we review the model, whose steady-state solutions are
cussed in Sec. III, where we also present phase diagr
describing the infection outcome for the single antibo
problem in terms of the parasite- and antibody-genera
rates. The dynamic properties, including the effects of ti
delays on antibody activation, are analyzed in Sec.
whereas the influence of decoys is examined in Sec. V.
paper ends with a short discussion of possible model ge
alizations.

II. THE MODEL

To model the parasitemia evolution we adopt as a pa
digm Chagas’ disease. In this disease, parasite introduc
usually stimulates population increases in several antib
species@14#. If we consider thatN antibody species interac
with the parasite populationn(t), the evolution ofn(t) is
described by

ṅ~ t !5kn~ t !2n~ t !(
i 51

N

a iai~ t !, ~1!

where the first term represents the asexual reproductio
the parasites and the second term represents their interac
with the antibodies. The coefficientk controls the parasite
reproduction rate,ai is the population of thei th antibody
species, anda i defines the likelihood of antibody-parasi
removal upon an encounter.

Assuming that the direct interaction between antibo
species is negligible, the equation for the evolution of
population of thei th antibody species can be written as fo
lows:

ȧi~ t !5g in~ t !2a iai~ t !n~ t !2~1/t!@ai~ t !2ai0#, ~2!

where the coefficientg i controls the induced antibody cre
ation. The initial conditionai(0)5ai0 corresponds to eac
species having its equilibrium population in the absence
infection andt represents the intrinsic antibody lifetime.

III. STEADY-STATE PROPERTIES

By setting the time derivatives in Eqs.~1! and~2! equal to
zero and adding theN algebraic equations resulting from
Eqs. ~2!, we obtain a set of equations defining the stea
state populations,
03191
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nsS k2(
i 51

N

a iaisD 50 ~3!

and

ns(
i 51

N

g i2kns2(
i 51

N S ais2ai0

t i
D50, ~4!

where the subscripts labels the steady state. Hence the tw
possibilities for the steady-state parasite population arens
50 and

ns5S (
i 51

N

g i2k D 21

(
i 51

N S ais2ai0

t i
D . ~5!

If the initial antibody population is very low, we may tak
ai050. In such a case the condition for a finite final paras
population is

(
i 51

N

g i.k. ~6!

The analysis of the solutions is greatly facilitated if w
first consider the outcomes for a single antibody species@6#.
If we analyze the asymptotic (t→`) regime, we then find
three different cases.

~I! Chronic disease: Ifg.k.aa0 ~or a0,as), i.e., for
strong induced antibody formation and low removal ef
ciency, the system reaches a long-time steady state desc
by

ns5
k2aa0

at~g2k!
, as5

k

a
. ~7!

The stability of the steady-state solutions was proved
ing the Routh-Hurwitz criterion@11#.

~II ! Healing: If g.k and aa0.k, corresponding to
strong induced antibody formation and high removal e
ciency, the antibody number goes back asymptotically to
initial value a0, while the parasite number goes to zero, i.
the system returns to the initial conditions.

~III ! Host death: Ifg,k, i.e., for weak induced antibody
formation, the antibodies, regardless of their efficiency,
not created fast enough so as to control the infection.

A special case deserves separate consideration. Ifaa0
.k and the initial inoculation is small,n0,ns , a highly
efficient, even if slowly reproducing, antibody populatio
can dispose off the invaders, leading to a return to the ini
conditions, i.e., to healing. This is remarkable, becaus
indicates that the infection outcome may depend on the
oculation size. The existence of this subcase, which we la
IIIb, can be explained by the following lemma.

Lemma. If g,k,aa0, the inequalityn0.ns is a neces-
sary condition for host death.

Proof. For simplicity, we takea to be a constant. Unde
the specified conditions, the parasite population must
tially decrease. However, host death implies that it m
grow at long times, so that it has to go through a minimu
8-2
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DYNAMIC ANALYSIS OF A PARASITE POPULATION MODEL PHYSICAL REVIEW E65 031918
n(tmin) at some intermediate timetmin . The extremum con-
dition ṅ(tmin)50 implies thata(tmin)5k/a. The extremum is
a minimum if

0,
]2n

]t2 U
tmin

5kṅ2an~ tmin!ȧ2aa~ tmin!ṅ

52an~ tmin!ȧ~ tmin!, ~8!

i.e., if ȧ(tmin),0. By using Eq.~2!, we see that this condition
is equivalent to demandingn(tmin).ns. Hence, if n0³ns ,
the parasite population will decrease and eventually dis
pear, resulting in host healing.

In the special casea050, a steady state with a finitens
occurs wheng.k. Otherwise the infection cannot be co
trolled, whatever the antibodies’ aviditya.

From the preceding discussion we see that the outcom
the parasitic invasion does not depend on the size of
invading population, except for the emergence of case I
We can therefore construct a phase diagram in the p
defined by the growth ratesg andk. This is done in Fig. 1,
where the boundary between the domains correspondin
cases III and IIIb was found numerically for two differe
initial parasite populations.

An analysis similar to the one used to prove the lem
shows that the boundary between the regions correspon
to cases III and IIIb is described by the equation

g5F11
1

atn~ tmin!
Gk2

a0

tn~ tmin!
. ~9!

FIG. 1. Phase diagram describing the outcome of the para
infection in terms of the parasite (k) and antibody (g) generation
rates. The location of the boundary between cases III and IIIb
pends on the sizen0 of the original infective population. The aste
isk corresponds to the point in the phase diagram analyzed in Fi
Here, we chosea05t50.1 anda540.
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Of course, this equation does not imply a linear relation
tweeng and k becausen(tmin) is a function ofk. This is
seen in Fig. 2, where we plot the boundary for several val
of the antibody intrinsic lifetimet. According to these re-
sults, for an invading force of fixed size, a shortening of t
antibody lifetime favors healing. This apparently surprisi
behavior can be explained as follows: For short-lifetime a
tibodies, the immune system of a parasite-free host gener
antibodies at a high rate to maintain a constant populat
Therefore, the antibody creation induced by the parasite
vasion represents a minor deviation from the steady state
the opposite case, i.e. for large values oft, the antibody
production reacts slowly to a decrease ina, and the parasite
population can grow without control. In particular, for ‘‘im
mortal’’ antibodies, i.e., for those that can be removed o
by interaction with parasites, the boundary between regi
III and IIIb coincides with theg5k line: in this case the
only relevant criterion for infection control is whetherg
.k or not.

The properties of the parasite population correspondin
a particular point in the phase diagram are shown in Fig. 3
the initial parasite population is smaller thanns , the humoral
system controls the infection and the parasite population
creases monotonically. Ifn0.ns , the parasite population ini
tially decreases, reaching a minimum at a timetmin , which is
a sharply decreasing function ofn0 @see Fig. 3~a!#. From Fig.
3~b!, we see that the difference between the initial populat
and that at the minimumn(tmin) is substantial only ifn0 is
close tons .

IV. DYNAMICS

A. General properties

The dynamic properties of predator-prey models are w
known @11,18#. In Volterra’s model, for example, the con

ite

e-

3.

FIG. 2. Dependence of the location of the boundary betw
regions III and IIIb on the intrinsic antibody lifetimet for the
values detailed in the figure. The shape of this boundary obeys
~9!.
8-3
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G. J. SIBONA AND C. A. CONDAT PHYSICAL REVIEW E65 031918
stant of motion and the ensuing closed orbits arise beca
the interaction terms have opposite signs in the equations
the predator and the prey: the immediate result of
predator-prey interaction is that the predator population
creases while the prey population decreases@19#. As re-
marked in the Introduction, no closed orbits occur in o
parasite invasion model. There is no constant of motion
cause the populations ofboth species are reduced by th
interaction.

Time-dependent solutions to Eqs.~1! and ~2! are easy to
obtain numerically using a standard Euler method. A parti
larly informative way of presenting these solutions is to co
struct phase portraits: oncea(t) andn(t) are calculated for

FIG. 3. Influence of inoculation size on the properties of t
parasite population corresponding to the pointk53, g52 of the
phase diagram in Fig. 1.~a! Time at which the parasite populatio
reaches a minimum~infection onset occurs att50). ~b! Difference
between initial and minimum parasite populations. Fort.tmin the
parasite population grows monotonically. Ifn0,ns50.25, the para-
site population is annihilated.
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any given parameter set, we assign to each value of the
a point in the (a,n) plane. By joining these points we the
draw a trajectory describing the system evolution for each
of initial conditions. Phase portraits can also be bu
automatically by using mathematical software such
MATHEMATICA or MAPLE. We can draw some general concl
sions about the dynamics of our model by looking at t
phase portraits presented in Fig. 4.

In case I, the phase trajectories in the plane (a,n) @see
Fig. 4~a!# exhibit closed loops ending at a fixed point corr
sponding to the steady state. This means that both pop
tions oscillate as functions of time, which can be understo
as follows: because of the strong growth rate and low avid
of the antibodies, bothn(t) and a(t) grow sharply at short
times. As a result, there is a rapid increase in the nega
parasite-antibody encounter term, which induces a decre
in both populations. The nonlinearity of the coupling ter
generates an interesting phenomenon: the simultaneous
crease in the antibody and parasite populations eventu
causes the right-hand side of Eq.~1! to become positive.
Consequently, the parasite population starts increasing ag
which triggers an upturn in the antibody population. We c
see from Eq.~1!, for N51, that theT. cruzi population has
either a maximum or a minimum at all timest j such that the
equation

k2aa~ t j !50 ~10!

is satisfied.
In case II, because of the high creation rate and str

efficiency of the antibodies, the parasite population go
down to zero at long times. Although the parasite num
always decays monotonically, the antibody number exhib
two different intermediate-time behaviors, depending on
value of a: for a.g/a0 , a(t) goes through a minimum a
intermediate times, whereas fora,g/a0 the antibody popu-
lation initially grows, passing through a maximum, befo
reaching the final state@see Fig. 4~b!#. An increase in the
initial number of parasites has no qualitative effects beyon
short-time transient.

In case III the parasite population grows monotonically
long times due to fast replication while the antibody numb
goes to a finite constant. A large value ofn requires thatg
5aa; therefore, the asymptotic value of the antibody nu
ber is

as5a~ t5`!5
g

a
. ~11!

The long-time antibody population is now determined
the avidity and the rate of antibody creation and not by
rate of parasite creation, as in case I. The parasite popula
grows exponentially,

n~ t→`!;exp@~k2g!t#. ~12!

Since ṅ(t50),0, n(t) must have an intermediate-tim
minimum before going to its asymptotic value. This is o
served in Fig. 4~c!, which also shows that the initial cond
tion a0.k/a, n0,ns leads to case IIIb~healing!.
8-4
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DYNAMIC ANALYSIS OF A PARASITE POPULATION MODEL PHYSICAL REVIEW E65 031918
FIG. 4. Typical phase portraits for the antibody-parasite popu
tions. In all cases,t510 andk53. ~a! Case I,a50.4 andg54.
There is an oscillatory convergence towards (as ,ns)5(7.5,0.55)
~chronic disease!. ~b! Case II, a52 and g54. Convergence to-
wards ~0,2! ~healing!. ~c! Case III,a52 andg52. Evolution to-
wards (1,̀ ) ~death!. However, if a0.k/a51.5 andn0,ns , we
are in case IIIb~healing!.
03191
Next, we consider the borderline caseg5k. By setting
a(t)5k/a1R(t), we see that Eqs.~1! and~2! can be rewrit-
ten as

ṅ~ t !52aR~ t !n~ t !, ~13!

and

ȧ~ t !5~1/t!@a02k/a2R~ t !#2aR~ t !n~ t !, ~14!

respectively. At very short times,ȧ(t)'ṅ(t)52(aa0
2k)n0. Both populations vary linearly, with the same slop
The antibody number tends towardsk/a. Under the condi-
tion atn@1, Eqs.~13! and~14! are approximately solved by
writing R(t)5D/n(t), with D5(1/at)(a02k/a). In this re-
gime,a(t).k/a and ṅ(t).(k/a2a0)/t. If k,a0a ~at the
frontier of case II!, n(t) decreases linearly untilatn'1 and
the approximation above breaks down. Thena(t) grows
again towards its asymptotic valuea0 while the parasite
population n(t) decreases exponentially, as exp@2(k
2a0a)t#. If k.a0a ~at the frontier of case I above!, n(t)
grows and the conditionatn@1 is always satisfied. Conse
quently, the parasite population will continue to grow li
early while the antibody population will tend tok/a.

Figure 5 exhibits the two completely different outcom
of the borderlineg5k problem. The curves on the lef
~smalla0) correspond to the frontier between cases I and
while those on the right correspond to the frontier betwe
cases II and III. In agreement with the discussion above
short times, phase trajectories are parallel straight lines
unit slope, for parasite and antibody numbers both dep
linearly on time. At later times, alla0,k/a trajectories turn
sharply up: whilea(t) goes tok/a, n(t) grows linearly with
slope (k/a2a0)/t. For a0.k/a, i.e., at the frontier be-
tween cases II and III,a(t) approachesk/a at intermediate

-

FIG. 5. Borderline caseg5k53. Phase portrait fora50.4 and
t510. If k.a0a the phase trajectories converge towards (k/a,`),
whereas ifk,a0a they have their attractor at (a0 ,`).
8-5
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G. J. SIBONA AND C. A. CONDAT PHYSICAL REVIEW E65 031918
times, whilen(t) decreases linearly. Finally, whenn is so
small that the conditionatn@1 is no longer satisfied,a(t)
approaches its asymptotic value (a0) while n(t) decays ex-
ponentially to zero.

B. Delays

Next, we consider the effects of a retardation in the i
mune system reaction to the invasion~as it occurs in the
Chagas infection@6#!. The retardation can be taken into a
count by introducing a time delay@11,20# u i in the term
representing antibody generation in Eq.~2!, which now reads

ȧi~ t !5g in~ t2u i !2a iai~ t !n~ t !2~1/t!@ai~ t !2ai0#.
~15!

The equation for the parasite evolution remains unchang
It was recently shown that the introduction of a time de

in the immune response model of Mayer yields chaotic
havior @15#. This situation does not occur in our model;
most cases the time delay merely introduces a transient s
in which the parasites reproduce freely. After a timeu i the
system behaves as if it had started with an initial para
population n(u i). The absence of delay-induced dras
changes is not surprising, since we have already seen tha
different outcomes of the parasite-antibody competit
model do not depend on the initial parasite population,
only on the constant model parameters, which remain
changed with the introduction of the delay. Ifg,k,aa0,
however, the parasite can use the delay to gain a defin
advantage, because the location of the phase boundary
tween cases III and IIIb does depend onn0. By effectively
increasing the parasite population at the time the antibo
are activated, the delay can induce a switch from case
~survival! to case III ~death!. This is exemplified in Fig. 6

FIG. 6. Phase trajectories for the indicated time delays.
small delays, they converge to the attractor (a0,0) ~healing!, while
for long delays they converge to (0,`) ~death!. Here a051, n0

50.04, a54.6, t51/0.12,k54, andg53.
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where phase portraits for a single antibody species are p
ted. The phase trajectories undergo a sudden change in s
at the time the antibody molecules become efficient. F
short-time delays, the trajectories converge towards
‘‘healing’’ attractor (a0,0), whereas for long delays the tra
jectories tend to (0,̀) ~patient death!.

In principle, antibody production and parasite grow
could depend on the availability of some essential nutrie
If this were the case, we should introduce a new varia
v(t), the amount of available critical nutrient, whose tim
variation would depend on the parasite number and on
antibody generation rateg. The antibody generation rat
would itself depend on the instantaneous value ofv and per-
haps even on its history. A long delay would tend to imp
the immune system through a decrease ing.

C. Oscillations

The oscillations appearing in case I deserve some fur
consideration. Simulations show that after an initial sha
decay, the time difference between successive extrem
a(t) stabilizes due to the gentleness of then(t) oscillations,
which provide a smooth feedback to the antibody numb
We can analyze this behavior through a linearization of
evolution equations aboutas andns , writing

n~ t !5ns1N~ t ! with uN~ t !u!ns ,

a~ t !5as1A~ t ! with uA~ t !u!as .

The system of Eqs.~1! and ~2! becomes, to first order

Ṅ52ansA, ~16!

Ȧ5~g2k!N2S 1

t
1ansDA. ~17!

We now define the parameters

T5
2t~g2k!

g2aa0
, ~18!

v25
k2aa0

t
2S g2aa0

2t~g2k! D
2

. ~19!

If v2,0, the pair of Eqs.~16! and~17! has solutions that
tend exponentially to their asymptotic values. More intere
ing is thev2.0 case, corresponding to largek values, for
which we obtain the solutions

A~ t !5e2t/TA0cos~vt2w!, ~20!

N~ t !52
ansTe2t/T

11~vT!2
A0@cos~vt2w!2vT sin~vt2w!#,

~21!

where A0 and w are constants that depend on the init
populations. The parameterT is the characteristic time re
quired to reach the stationary population.

r

8-6
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DYNAMIC ANALYSIS OF A PARASITE POPULATION MODEL PHYSICAL REVIEW E65 031918
This behavior is exemplified in Fig. 7. The regularity
the sinusoidal oscillations in the antibody number becom
evident when the exponential factor is extracted@see Fig.
7~b!#. This stabilized oscillatory behavior can be studied
using the fast Fourier transform. The resulting spectru
shown in Fig. 7~c!, has a unique peak corresponding p
cisely to the frequency predicted by Eq.~19!.

V. DECOYS: AN EFFECTIVE SELF-DEFENSE
MECHANISM?

Competition is a common occurrence in biological sy
tems, be it at the molecular@21# or the macroscopic@11#
levels. It is often the case that an additional species mod
the action of a predator against a specific prey. This comp
tor species may reduce@22# or increase@23# the probability
of extinction of the prey. Of special interest to us is the ca
when the ‘‘competitor species’’ is an invader-generated
coy that confounds the immune system. Decoy genera
may be a necessary by-product of the invader activity, o
may be part of a self-defense mechanism. It has been

FIG. 7. Evolution of the antibody population.~a! Its full time
dependence.~b! Regular oscillations exhibited once the exponen
decay is extracted.~c! Fourier spectrum of the antibody populatio
The parameter values are,a050.01, n050.1, a51, t50.8, k
520, andg540.
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served in theT. cruziproblem@16#, where the parasite play
the role of the invading species. The effect of these dec
on the antibody and parasite populations can be quite c
plex, because they not only incapacitate antibody molecu
but they may also induce an extra activation of the antibo
generating cells. This activation could, in principle, work
two different ways:~i! decoys stimulate the production o
antibodies harmless to the invader, and then weaken the
mune response by decreasing the amount of available
cific antigen~since antibody-producing cells have a limite
amount of amino acids to build them, an increase in
diversity must lower the specific antigen population!; ~ii ! de-
coys stimulate the production of specific antigens~this would
occur if the immune system cannot distinguish betwee
segment shed by the invader and the invading organism
self!. The first case could be accounted for by suitably red
ing the antibody generation rate. In the second case, it is
possible to ascertaina priori the outcome of the decoy ac
tion. We will find the condition that the parameters mu
satisfy in order to ensure that the decoys operate as an e
tive self-defense mechanism for the invaders.

In case~i! the effect of decoy action is quite straightfo
ward ~to decreaseg); for this reason, we will analyze only
case~ii ! in depth. When decoys are introduced in our mod
the parasite evolution equation is not modified, but we ha
to add a new equation for the decoy populationd(t). In the
single antibody problem we have

ḋ~ t !5kdn~ t !2ada~ t !d~ t !, ~22!

where kd is the decoy production rate andad defines the
likelihood of antibody-decoy removal upon an encount
Because of the presence of the decoys the antibody equ
acquires an extra term

ȧ~ t !5~1/t!@a02a~ t !#1@g2aa~ t !#n~ t !

1@gd2ada~ t !#d~ t !, ~23!

where the coefficientgd controls the decoy-induced antibod
production. Following the same procedure as in Sec. III
find the steady-state populations in the chronic case to b

as5
k

a
, ~24!

ds5
~kd /t!~k2a0a!

~g2k!adk1~gda2kad!kd
, ~25!

and

ns5
ad

a

k

kd
ds5

ad~k/at!~k2a0a!

~g2k!adk1~gda2kad!kd
. ~26!

The introduction of the decoys modifies the conditio
leading to the different evolution cases mentioned in Sec.
Again, the stability of the steady-state solutions was prov
using the Routh-Hurwitz criterion@11#. This criterion indi-
cates that case III~host death! occurs if

l
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g,k1kd2
agdkd

adk
, ~27!

otherwise, we are in case I~chronic disease!, provided that
k.aa0.

The corresponding phase diagram is presented in
8~a!. For high values ofk the boundary between regions I
and I or II ~healing! is shifted by the presence of deco
towards higher values ofg, favoring the parasite invasion
For small values ofk, however, the border bends down a

FIG. 8. Phase diagram for the problem with decoys for two s
of parameters:~a! a054, d(t50)50, a5ad51, t510, kd53,
and gd52. Theg5k line corresponds to the phase separation
the absence of decoys. The separatrix between cases I and III
asymptotically tog5k1kd . The location of the separatrix be
tween cases III and IIIb depends on the initial parasite popula
n0. ~b! Same parameters, except thatad50.2, kd510, andgd53.
03191
g.

the decoy production favors healing. From condition~27!, it
is clear that for

k,
kd

2 SA11
4agd

adkd
21D , ~28!

the parasite population will disappear even ifg50 ~no
parasite-induced antibody creation!. The reason is that, unde
these conditions, decoy generation favors antibody prod
tion without substantially neutralizing the antibody popu
tion. By comparing the steady-state values, it is easy to
that decoy emission benefits the parasite if the condition

k.
a

ad
gd ~29!

is fulfilled. If, in fact, the invader releases decoys to ta
advantage of the immune system, it must have evolved
such a way that this inequality is satisfied. Otherwise
invasion would not be favored. Although it may be argu
that calling the object a ‘‘decoy’’ would be a misnomer
inequality~29! is not satisfied, we keep the name for the sa
of descriptive unity.

A further complication arises in the analysis of the fro
tier region between cases II and III. As in the no dec
problem, numerical analysis indicates that, if the parasite
oculation is small, region IIIb~healing! appears between I
and III.

The Routh-Hurwitz analysis yields a second conditio
which takes the form of a very complex inequality. For a s
of parameters defined by this inequality, no stable state
be reached. Interestingly, numerical work shows that,
these parameters, which embody what we call case IV
population limit cycle emerges. The phase diagram for a
of parameters exhibiting region IV is shown in Fig. 8~b!.
Region IV always appears inside region I, abutting theg
50 line and/or region III.

A combination of the second Routh-Hurwitz conditio
and inequality~27! determines the following necessary co
dition for the existence of case IV,

kd.
ad

2a0
21Aad

4a0
414aadgda0

2~gd2ada0!

2~gd2ada0!
. ~30!

In Fig. 9 we present a typical phase portrait for this case.
can see that, independently of the initial conditions, the s
tem trajectories always end in a limit cycle.

VI. DISCUSSION

We have extended the analysis of our model for the in
action between parasites and antibodies during the a
phase of Chagas’ disease@6#. The dynamics of the parasit
and antibody populations has been studied in detail, incl
ing the influence of the size of the parasite inoculation and
delays in the activation of the immune system. The influen
of parasite-generated decoys has been also investigated
we have obtained a simple criterion that enables us to de
mine whether the parasite is indeed benefited by decoy e

ts

nds

n
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sion. The presence of decoys can substantially alter the p
lation phase diagram. Under certain conditions,
qualitatively new type of outcome~a limit cycle! is possible.
This limit cycle would imply nondecaying oscillations in th
parasite and antibody populations.
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further study, is the influence of preceding infections, wh
could impair the response to a new one, with a differe
pathogen, or to vaccination. There is ample evidence that
is the case for various infections@24–26#. Another problem
that could be modeled is the influence of decoys introdu
artificially to combat disease@27#.

The model presented here is particularly suitable to qu
titatively investigate the effects of elements that modify t
competitive process between an invading agent and the
mune system. In this paper, we have discussed the effec
delays and of the introduction of decoys. Another elem
that deserves to be examined is the effect of noise. Noise
been shown to have substantial influence on predator-p
systems@28# and on epidemic models@29#. The interplay
between delays and stochasticity is also a subject of cur
interest@30#. We are now starting an examination of the e
fects of noise on the parasite-antibodies system.

Our model could be also applied in the fields of chem
therapy and vaccination as a tool to help with the design
usually expensive and time-consumingin vivo experiments,
by performing fastin machinasimulations. The developmen
of a successful vaccine againstT. cruzi is a complex en-
deavor @31# and, by incorporating the action of chemo
therapy, mathematical modeling could yield valuable pred
tions.
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