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Introduction
Despite  the  advances  that  modern  medicine  has  made  to  protect  against  disease,  parasitic 

diseases are  still  a  worldwide epidemic.  Three prevalent  diseases caused by parasites  are  malaria, 
schistosomiasis, and Chagas’ disease. It is estimated that 16 to 18 million people are infected with 
Chagas’ disease, and 50,000 people of those infected will die each year (CDC, 2004). 

Trypanosoma cruzi  (T. cruzi) is the parasite that causes Chagas’ disease. It is a uniflagellate 
protozoan parasite that belongs to the order Kinetoplastida (Bastin, 2000). During its life cycle the 
parasite lives in both an insect host and a mammalian host, and has 3 developmental stages that are 
seen in both the invertebrate  and vertebrate  host  (De Souza,  2002).  Due to  the complexity  of  the 
organism’s life cycle dynamics, it is an intriguing model to study host-parasite interactions. 

In particular, the flagellum of the T. cruzi parasite is a very interesting structure to study. The 
flagella of the T. cruzi is hypothesized to be involved with its ability to reach and invade host cells as 
well as be involved with the attachment to the host cell (Bastin, 2000), thereby making it an important 
component of the parasite’s behavior. Thus, the more we understand about the flagellum of the T. cruzi  
and how the T. cruzi interacts with its environment, the greater ability one will have to fight diseases 
caused by parasites. 

Currently  I  am developing  a  continuum model  to  describe  an  eukaryotic  flagella  in  three 
dimensions. The model is not specific to T. cruzi at the moment, but will hopefully be updated in the 
future to include certain characteristics of the T. cruzi flagella. I have worked on solving equations that 
have been previously developed to describe the flagella (Brokaw 2002, Brokaw 1985). The model is 
based on whether dynein motors are on or off. The motors are switched on or off based on the local 
curvature of the flagella at that point. If the local curvature is greater than a critical value then the 
motor is turned on, and if the local curvature is less than that same critical value, then the motor is 
turned off.

The model first takes advantage of the physical fact that all moments acting on an element must 
equal zero. Thus, if s is defined as the arclength of the flagella, and t is defined as time, we have the 
starting equation:

 M A s , t M E s ,t M S  s , t M V  s , t =0  (1)

where MA is the shear moment due to the dynein motors, ME is the elastic bending resistance, Ms is the 
moment  due to  shear  resistance  (nexin links),  MV is  the  moment  due to  external  viscosity.  Shear 
moment (MA) can be developed by finding the force at every point on each doublet of the flagella and 
summing those forces at each point along the length of the flagella. According to previous work, the 
change of force with time along a single doublet of the flagella can be described by the differential 
equation:



 
dm t , s
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=−E SCB∣mA∣̇k 1mA−m t , s  (2)

where m is the force, -ESCB is shear resistance, mA is the switch value that determines whether a dynein 
motor is on or off, and k1 is a rate constant at which force approaches the force of the dynein motor 
(Brokaw 1985). In the above equation, for a change in shear, dσ/dt, there is a resistance to that shear. 
Also, there is a first order recovery of m approaching mA, the force produced by the dynein motor. 

Equation (2) can be straightforwardly solved to yield an equation for force,
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The force in the direction of each doublet can then be calculated from equation (3) and summed to 
obtain the total force at each point along the flagella. Thus, MA can now be expressed as the integral of 
equation (3) along the length of the flagella. Bending and shear resistance can be introduced to the 
equation as linear resistances,

M E=−E B s , t  (4) M s=−E s∫
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s
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where EB and ES are bending and shear resistance parameters, and κ is the curvature of the flagella. If 
there is no sliding at the base of the flagella, shear and curvature can be related by the equation,
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Currently,  in  the  project  I  have  set  the  external  viscosity  to  be  zero.  Later  models  will 
incorporate viscosity, but in the beginning stages it is simpler to let it be zero. MA, ME, and MS, have all 
been defined and can be substituted into equation (1). If curvature is substituted for shear, then the only 
unknown in the moment balance is curvature. Curvature can be solved for, and be straightforwardly 
used to describe the shape of the flagella. The moment balance is now as follows,
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where N is the sum of the doublet shear moments, and θm is the direction of the doublet moments. The 
current integral  for of equation (7) can't  be solved exactly, but it  can be turned into a differential 
equation that can be solved for curvature. By taking appropriate derivatives with respect to “s” and “t”, 
we obtain the following partial differential equation for κ(s,t),
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We can now use the technique of separation of variables to derive a solution for equation (8). 
We do this as follows. If we let κ(s,t) = S(s)T(t) then equation (8) can be rewritten as 

TSC1Ṫ SC 2 S̈ TC 3 S̈ Ṫ=0 (9)



where a dot denotes the derivative with respect to the given independent variable. Equation (9) can be 
rearranged and factored two different ways to yield a function that only depends on t on the left hand 
side, and a function that only depends on s on the right hand side. For these two equations to be equal 
for all t and s they must both be equal to a constant value -λ2.  
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Equations 10 and 11 both produce straightforward differential equations for T and S. When solving for 
T and S,  in  equation 10,  there  is  always an oscillating term,  but  in  equation 11 there is  only an 
oscillating term if 

C1
2−1

C 2−C3
20

Remember that the sign of C1 depends on the direction of the shear force on the flagella. Biologically, 
C1 can be positive or negative and that should have no bearing on the motion of the flagella, except the 
direction in which the flagella is moving. But, in this case, the sign of C1 will determine whether or not 
the flagella model oscillates. There seems to be something amiss with this result.

Applying the boundary conditions associated with equation 10 allows us to demonstrate that 
there are an infinite number of solutions for 10. We index these with the letter “n.” Combining all of 
our pieces and remembering that κ(s,t) = S(s)T(t), we have that the total solution for the curvature κ(s,t) 
is given by
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where  λn =  π n / l and l is the length of the flagellum. At this point, we have finally arrived at an 
equation for curvature that can be used to describe the flagella for all time. We now need to determine 
the value of the unkown constant Ωn. We do this as follows. Set t = 0 and use the initial condition for 
the curvature at the beginning of the simulation. This yields the following equation. 
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Next, we apply the method of Fourier analysis to extract the values of Ωn. We first multiply equation 
(13) by sin(λms) (assuming  m is not equal to  n) and integrate the equation along the length of the 
flagellum. This yields the following equation. 
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Equation (14) can be solved for all values of n. There are three separate cases that must be considered: 
(1) for n ≠ m the integral on the rhs is equal to zero, (2) for n = m the integral is l/2 and for (3) n = m = 
0 the integral is equal to 0. Using this information it is straightforward to solve for Ωn and we can now 
express the final equation for the curvature κ(s,t),
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Equation (15) describes the curvature of the flagella for "t Î [0, ∞) and "s Î [0, l].  Curvature 
can then be used to convert the flagella coordinates into a global coordinate system, which allows the 
flagella  to  be  graphically  visualized.  However,  there  is  a  problem with  equation  (15).  All  of  the 
biological modeling parameters that are involved in the model appear in the exponential term. When 
biologically realistic values are used for these model parameters, the exponential term in equation (15) 
causes the summation to be zero for any value of t not equal to zero. Consequently, there seems to be 
something wrong with this model, our method of solving the model, or the biological assumptions that 
went into constructing the model.. 

In addition to deriving this continuum model for the flagella, an iterative approach is being 
developed. Also a program has been developed that can take the curvature vectors for a flagella and 
translate  those  curvatures  into  Cartesian  coordinates  and  visually  represent  the  flagella  in  three 
dimensions. The program is written in C++ using OpenGL. 

Goals and Plan for Academic Year
At the moment the continuum model of the eukaryotic flagella is not working. This suggests 

that there must either be something wrong with some assumptions that were made while developing the 
model, or that the model itself is incorrect. My first goal of the academic year is to meet with Dr. 
Charles Brokaw, an expert in this field of work. It is his model that I am using to simulate the flagella, 
and his advice will be very beneficial to my project. Based on the input I get from Dr. Brokaw, there 
will be different directions that I go in.

If there are simple assumptions that are wrong in my model I will correct these assumptions and 
continue to develop this model. If there is something fundamentally wrong with solving this model 
continuously I will continue to develop the iterative approach to accurately describe the flagella. Or, it 
could be possible that I  will have to start  over from the beginning and develop a completely new 
model.

Regardless of which path I take, I will develop the model to contain all the factors that are 
currently incorporated into the model (shear moment, shear resistance, and bending resistance). The 
next step will be to incorporate viscosity into the model. Currently, viscosity is considered to be zero, 
which is not realistic. After viscosity is introduced, the cell body will be added to the model, so the 
flagella will be affected by the cell itself. The T. cruzi flagella is attached to the cell body for much of 
its length, so this is an important factor when building the model.

In parallel  with this project I will continue to develop a way to visualize the flagella using 
curvature vectors. The working model will be made into a program that will be able to compute the 
motion of the flagella using the user specified parameters. This will involve not only programming the 
model, but developing a user interface that will allow the user to input the desired model parameters.

Budget
Given the variable nature of my project at the moment it is difficult to envision the specifics 

about what my project needs will be. As I begin to do more and more programming I will most likely 
need  books  about  numerical  and  computation  analysis  to  be  able  to  produce  effective  and 
mathematically accurate code. In addition, depending on the magnitude of the computations, I might 
need to gain access to a computer that will be able to visualize and compute the calculations in a 
reasonable time. Lastly, I will most likely be producing lots of data, and it might be necessary to buy 
resources to store, visualize, and analyze this data such as computer software or hardware.
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