
Introduction 

 From the development of alcoholism to the transformation of a healthy cell into 

tumor cell, on a molecular basis, every state of the human body arises from changes in 

proteins produced, which, in turn, is affected by the genes that are being expressed in a 

given cell under certain conditions.  By understanding the genes that are affected by a 

given event, researchers can find target proteins for inhibition or activation by a drug to 

change the way in which the body reacts to the event. 

 

Summer Summary 

 An increasingly common way to find answers to gene expression is by 

microarray.   Oligonucleotide microarrays allow researchers to examine the relative 

expression level of thousands of genes simultaneously.  If this technology is reliable, it 

can provide a huge insight to the regulation of genes for a given situation.   

Specifically, the lab in which I was used microarrays to look at differences in 

gene expression between two inbred mouse strains (namely, C57 Black 6 or C57/BL6 

and DBA) that have different behavioral reactions when treated with ethanol.  

Microarrays measure the amount of gene expressed by the amount of complimentary 

DNA (cDNA) that anneals to a complimentary sequence on the chip.  But the different 

inbred strains are not genetically identical.  In addition to other possible genetic 

differences, they may have one nucleotide mismatches.  These are called single 

nucleotide polymorphisms or SNPs.  If a SNP were to occur in the target sequence (the 

part of the gene that anneals to the microarray) would that affect the annealing of the 

cDNA to the array enough to alter the perceived relative expression of the gene? 



In order to answer this question I found genes that were differentially expressed in 

a manner that suggested that the difference could be a false positive caused by SNPs: 

genes for which a difference in expression was reported regardless of cellular 

environment.  I selected twenty-one candidate genes from genes that were differentially 

expressed in a consistent manner in saline-treated animals of the two strains across all 

brain regions examined (the prefrontal cortex, the nucleus accumbens and the ventral 

tegmental area.) 

 For each of the candidate genes I took the sequence that Affymetrix was using for 

probes, and the sequence of each of the two mice strains.  I then aligned the three 

sequences.   Of the eight genes for which I could find sequence data for the entire target 

sequence, five had at least one SNP that affected at least one probe.  In addition, of the 

seven genes for which at least partial sequence data was available for the target sequence 

in each strain, three had at least one probe affected by a SNP.  I selected three of the five 

genes for which there was complete sequence information in both strains and that were 

affected by SNPs.  The genes I selected were Aldehyde Dehydrogenase family 9, 

subfamily a1 (ALDH9a1), Kinesin Associated Protein 3 (KAP3) and Valosin Containing 

Protein (VCP).   

 For each selected gene, I designed polymerase chain reaction (PCR) primers that 

bound outside of the microarray target sequence for the gene to an area that had no SNPs.  

I then ran real-time reverse transcriptase PCR on complementary DNA (cDNA) for 

samples of each gene from three saline-treated animals of each strain.  For Real time PCR 

a chemical that fluoresces when bound to DNA is added to the reaction (I used SYBR-

green, which binds non-specifically to the minor groove of double stranded DNA).  As 



the DNA is amplified, more fluorescence is emitted.  Pictures of the samples taken every 

cycle by a digital camera inside of the thermocycler are analyzed and used to calculate 

the quantity of DNA in each sample2.  I compared the fold-change in the starting quantity 

(SQ) between the two strains to the fold change between the strains in average difference 

from Affymetrix oligionucleotide arrays.  I used cDNA made from the same animals and 

the same brain region as those used for the microarrays.  

 For all three genes, my data suggests that the arrays were affected by the SNPs. 

For ALDH9a1, for which all but 4 of the Affymetrix probes had polymorphisms with 

respect to DBA mice, microarray data suggests that C57BL/6 mice express the gene 9.9 

times more than DBA mice, whereas qPCR showed a fold change of only 1.31 (figure 1).  

For VCP, which had SNPs in 4 of its Affymetrix probes with respect to the C57BL/6 

sequence, microarrays suggested that DBA was expressed at a level 1.18 times higher 

than C57BL/6 was, whereas PCR suggests that the difference is closer to 73 times (figure 

2).   Although that data seems strange in that it suggests that the SNPs actually increased 

annealing to the probes, it is predicted that in some cases a mismatch actually does make 

binding more favorable by increasing the stacking energy3.  But perhaps the most striking 

result is that for KAP3, which has two probes affected by SNPs for DBA, microarrays 

reported that the gene was expressed in C57BL/6 1.34 times more highly than in DBA, 

whereas PCR data suggests that the gene was actually expressed 1.30 times more highly 

in DBA (figure 3). 

 To confirm the wet lab experiment, I compared the measured intensity of each 

probe for the three candidate genes from experiments run on saline treated C57 and DBA 

animals.  For ALDH9a1 (figure 4) and KCP (figure 6), the probes for which there were 



SNPs in DBA showed a higher C57 to DBA ratio of expression than those without SNPs, 

which appears to confirm that SNPs hinder the annealing to probes for those genes.  For 

VCP (figure 5), the probes that had SNPs with regard to C57 also reported a higher C57 

to DBA expression ratio than those without SNPs, which appears to confirm that the 

SNPs are increasing the annealing of cDNA to the probes for that gene. 

 My data suggest that microarray results are not trustworthy when being used to 

compare relative levels of gene expression between genetically different subjects.  In one 

case, my data even suggest that the relative expression was opposite that reported by the 

microarray. 

  

Academic Year Project 

 For the academic year, my project will be taking a very different approach to the 

question of the affects of gene expression.  Knowing what genes are expressed in a given 

situation is very important, but it also leads to more questions: what do those genes do?  

How do they affect other genes?  How are they affected by other genes?  Molecular 

changes happen not just by the production of a single protein, but also often by a pathway 

of effects. 

 One of the ways in which pathways can begin to be predicted is by creating a 

graphical network that connects genes that are closely related in function and in 

regulation.  This is partially already possible; gene expression can be measured, data on 

predicted functionality and correlations in expression are available on the World Wide 

Web5,6, and programs such as Cytoscape1,4 will take predicted network relations and 

graph them and allow the user to work with them.  But collecting all of the necessary data 



and manually predicting networks is still a time consuming, manual task.  My academic 

year project seeks to attempt to automate that procedure. 

 I will be writing a program that accesses numerous databases and links genes on 

the basis of the data from all of the databases.  It would then display the created network.  

This program also has the advantage that it can keep predicted networks as up-to-date as 

the databases that it accesses with no additional manual work. 

 

 There are three main types of data that I plan on integrating to complete this task.  

The first is microarray data.  If the up-regulation of a gene strongly correlates with the 

up- or down-regulation of a second gene on microarray chips, that would be considered a 

linkage between them.  For this data, I plan on using microarray data collected by the 

Miles lab.  The second type of data is the predicted function of the protein produced by 

the gene.  If two genes are thought to be involved in the same broad category of 

functionality that would be considered a link.  This data would be accessed from EASE5.  

The third type of data is Quantitative Trait Loci (QTLs).  If one gene is found to have its 

expression highly correlated with another gene the genes are said to have a QTL.  This 

data will be accessed from WebQTL6.   

 Algorithmically, the program would be very simply.  Based on graph theory, it 

would consider each gene to be a vertex or a “node.”  Two nodes would be connected by 

an edge if they were linked by microarray data, predicted functionality or a QTL.  The 

edge would be “weighted” – given a number that, functionally, relates to the probability 

and strength of a relationship between the genes.  The weight would be directly related to 

the number of different data sources that indicate a connection between the genes. 



 Once the data structure of nodes and edges is created the program will be able to 

create a graphic using a similar system to that of the open source program Cytoscape.  

That is, the program will display a graph in which the vertices are genes (nodes), which 

are connected by lines whose width is proportional to the weight of the corresponding 

edges.  Code from Cytoscape, which is licensed under the Lesser Gnu Public License 

(which makes it legal to modify and redistribute the code) may be used in helping to 

build the graphical interface.  

 

Required Resources 

 No formal coursework is necessary for this project, although independent study of 

Perl and consultation with faculty of Oberlin College, specifically on databases and 

graphics are expected.  Additionally, no funding is necessary for this project. 

 

Figures 

Fig 1. 
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Figure 2 

VCP -- Microarray
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Figure 3 
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KAP3 -- PCR
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Figure 4 

P<.002



 

Figure 5 

VCP -- C57 v. DBA avg. diff.
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Figure 6 
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