
Introduction to Personal Programming with True Basic - 1 

VCU Bioinformatics and Bioengineering Summer Institute 
Introduction to Personal Programming with True Basic (6 June 2003) 

 
I. Why program? 
II. Overview of True Basic syntax 

A. Sample program in True Basic 
B. Variables 
C. Operators 
D. IF blocks 
E. Loops 
F. Subroutines and functions 

III. Structured programming 

A. The need for structured programming 
B. The process of writing a structured program 

 
I. Why program? 
Here’s a typical situation in bioinformatics 
You are examining the 967-nucleotide DNA sequence upstream from the gene that you work on, 
and you happen to notice something in it that astonishes you. You were just reading about the 
mechanism by which a protein, NtcA, binds to DNA and thereby affects gene expression, and 
you have a vague recollection of a table from that paper listing the proven DNA sites to which it 
binds (Table 1). You recall the first three conserved nucleotides GTA (stuck in your mind 
because it reminded you of “guitar”) and the next three TAC (inverse complement of GTA). 
What astonishes you is that staring you in the face is this very sequence, right in front of your 
favorite gene! There it is, GTA and TAC separated by the required 8 nucleotides, and further 
downstream (between 20 and 24 nucleotides), the sequence TA...T (Figure 1). 
Could it be that you have stumbled upon the mechanism by which your gene is regulated? 
You’re not accustomed to the gods smiling on you in this way, and you’re suspicious. Maybe 
this sort of sequence pops up frequently just by chance and is not by itself good evidence for the 
binding of NtcA. How can you tell whether celebrate your good luck or rather push away this red 
herring and get back to work? 
After some thought, you choose to let statistical considerations decide the issue. If this sequence 
related to NtcA binding is very unlikely to occur in a random 967-nucleotide sequence, then 
you’re prepared to swallow your suspicions and rejoice. How can you calculate whether this is 
the case? You have a nagging feeling that this kind of calculation is something you learned how 
to do in high school math, but who remembers those formulas when you need them? You could 
(a) try to remember what you never really knew (fruitless), (b) try to find something on the web 
(searching for what?), or (c) try to find someone who knows (at 3 am in the morning?), but the 
most straightforward solution is to forget math and write a simple computer program that will 
simulate the problem and provide an answer.  
Of course, this is the most straightforward solution only if personal programming is part of the 
mental tools at your disposal. I want to draw a distinction between personal programming and 
professional programming.  Professional programmers make a lot of money  (and deserve it)  not  



Introduction to Personal Programming with True Basic - 2 

 
 

GAACAGCTTGAACAAAGAAAAAATGGTTGAATTAACTAAATTACAAGCAA 
ATTTAGCCAAAAATTAACTCTGTGTATTCTTTTGCTCATGACGTTGGGTT 
ACATTGCTAGTTTTTAAAACGTAAGTCATTTAGCTAAAAGAACTTTTAAT 
AACTATAACAAAAATTTAATAATATTATCAACTTCGCTCTGGACAAGGCA 
TAAACTCAACATTTTGCCAACATAGGTTATAAAAAAACGTAGAGGTAATT 

GTGGCTAGAGTAACAAAGACTACAAAACCTTGGGCATGGGCTTGTTACTT 
TGAAATTCATCGACGCTAAGGGGTCTTGCCGCCGTGGGTTCGGTTTGTAT 
TGAAATCGTTGAGGGGAATCCCCATCTGAGGTCGTTGCTGGGTTGGCACT 
TGCAACAATTGGAATACCGTGTGCATCAAGCCGCCAGCATATATCAAGCA 
AGGGAAGCCTTTTTGAGCCATCAGCCAACTCTAGTGATTCTGGATGCTGA 
TTTGCCAGATGGTGACGGTATTGAATTTTGCCGTTGGCTGCATCGTCAGC 

 
Figure 1. Upstream region and partial sequence of gene all4312 from the cyanobacterium
Anabaena PCC 7120. The gene is shown shaded in cyano. Conserved elements of the
putative NtcA binding site is shown shaded in red. 
 

 

Table 1: Proven DNA sites to which NtcA bindsa 

  Strainb   Gene                 NtcA binding sitec Promoterd                     
PCC 7942 nir operon AAAGTTGTAGTTTCTGTTACCAATTGCGAATCGAGAACTGCC TAATCTGCCGAg 
 nirB-ntcB TTTTTAGTAGCAATTGCTACAAGCCTTGACTCTGAAGCCCGC TTAGGTGGAGCCATa 
 ntcA GAAAAAGTAGCAGTTGCTACAAGCAGCAGCTAGGCTAGGCCG TACGGTAACGa 
 glnB  TTGCTGTAGCAGTAACTACAACTGTGGTCTAGTCAGCGGTGT TACCAAAGAGTc 
 glnA TTTTATGTATCAGCTGTTACAAAAGTGCCGTTTCGGGCTACC TAGGATGAAAGc 
 amt1 CGAACTGTTACATCGATTACAAAACAACCTTGAGTCTCGCTG AATGCTTACAGAGa 
PCC 7120 glnA (I) CGTTCTGTAACAAAGACTACAAAACTGTCTAATGTTTAGAATC TACGATATTTCa 
 nir  AATTTTGTAGCTACTTATACTATTTTACCTGAGATCCCGACA  TAACCTTAGAAGt 
 urt AATTTAGTATCAAAAATAACAATTCAATGGTTAAATATCAAAC TAATATCACAAt 
 ntcB AAAGCTGTAACAAAATCTACCAAATTGGGGAGCAAAATCAGC TAACTTAATTGAAa 
 devBCA TCATTTGTACAGTCTGTTACCTTTACCTGAAACAGATGAATG  TAGAATTTATa 
PCC 6803 amt1 TGAAAAGTAGTAAATCATACAGAAAACAATCATGTAAAAA  TTGAATACTCTaa 
 glnA AAAATGGTAGCGAAAAATACATTTTCTAACTACTTGACTCTT  TACGATGGATAGTcg 
 glnB CAAACGGTACTGATTTTTACAAAAAAACTTTTGGAGAACATGT TAAAAGTGTCTgg 
 icd AATTTCGTAACAGCCAATGCAATCAGAGCCTCCAGAAAGGAT TATGATCTGCTCCg 
 rpoD2-V AAGTTTGTATCACGAATTACACTGCCGTGAAAATTTAACGA TATTTTGGACAg 
PCC 7601 glnA (P1) GAATCTGTAACAAAGACTACAAAAATTCTTAATGTCATATCCT TAGGATATTCCAGgt 
PCC 6903 glnN TTTTTTGTGCGCGTTTATACCAATCAAGTGCGATCTAATCGG TATCTTTTTTATc 
PCC 7002 nrtP TAAAGAGTATCAGCGGTTACGAATTTAGCGAAGAAAGAATGTGA TTCTTTATCACa 
WH 7803 ntcA GGAACCGTGTGCGTTGCTACAGGGTGGGAATCGATCGCTCCT TAATTTCCTTGAa 
Consensus                GTG   (8)  TAC       (20-24)          TA(3)T          
a Derived from  Herrero et al (2001). Journal of Bacteriology  
b Cyanobacterial strain designation. 
c Bold face highlights highly conserved nucleotides within the region experimentally shown to bind protein NtcA. 

Letters in red deviate from the consensus site. 
d  Bold face highlights highly conserved nucleotides within the region thought to bind RNA polymerase. Letters in 

red deviate from the consensus site. 



Introduction to Personal Programming with True Basic - 3 

because programming is difficult. Far from it. They earn their keep because they write programs 
that run fast, that accommodate users with no programming experience, that work in multiple 
computer environments, and that anticipate a wide variety of potential disasters, all so that the 
program can live on its own. In contrast, a program written just for your own purposes may work 
only on your computer, may require your active intervention, and may work clunky... but gets 
the job done. If you don’t know this already, you will soon realize that personal programming is 
easy, certainly easier than recalling high school math. 
There is no single more powerful tool in bioinformatics than personal programming. Throughout 
the summer, you will have the opportunity of picking up a computer language that you can use in 
personal programming. Many of you already know one or more languages, but so that we can 
communicate amongst each other, the Research Simulations will make use of one easily 
comprehended computer language: True Basic. 
 
SQ1. Do you understand the scientific dilemma posed by this scenario? 
 

II. Overview of True Basic syntax 
Some of you are very experienced programmers, while others have little or no programming 
experience. To save time for the former group without depriving the latter group of what they 
need, I’m going to provide boxes (red text) for those who know some programming language. 
These may enable some of you to skip sections of text. 

For the rest of you, my personal opinion is that no amount of explanation will help. What WILL 
help is you trying things out at the computer until the concepts make sense. You should feel free 
to fool around with the language in any way that occurs to you. There is nothing you can do 
short of physical violence that will hurt your computer.  
It is difficult for me to assess how much material is too much for one sitting. For those who are 
new to programming, what follows is surely way too much. Given the range of experience in this 
group, I must rely on your judgment and ask you to draw the line between what is challenging 
and what is overwhelming. Do what you can, and don’t kill yourself in the attempt.  
 

II.A. Sample program in True Basic1 
First, let’s examine a working program in True Basic, one that does something potentially useful. 
Regardless of your programming experience, all of you should be able to make sense out of a 
True Basic program that tries to make itself comprehensible. Download the file 
Simulated_Site_Search.Tru, and run it within your copy of True Basic. Take a look at the 
program by reading the brief description of the program in the first few lines and then scrolling 
down to the section entitled “Main Program”.  

SQ2. Were you able to run the program? 

                                                 
1 These notes presume that you have True Basic loaded on your computer. Disks with the language and other 
material will be distributed Tuesday morning, June 3. All programs listed in these notes can be downloaded from the 
course web site, so instructions to “enter the program” can conveniently be fulfilled by copying and pasting from the 
available file. 



Introduction to Personal Programming with True Basic - 4 

SQ3. Do you understand the significance of the output generated by the program in 
relation to the scenario described on the first page of these notes? 

SQ4. Do you understand from the Main Program how (in principle) the output is 
generated? 

The Main Program should give you an outline of what the program is trying to do and how it is 
trying to do it. The program should be as self-explanatory as possible through the use of 
descriptive names and clear syntax. Comments (lines beginning with exclamation points) should 
provide the big picture and fill in gaps when necessary. Notice the three most critical lines of the 
program: 
 CALL Make_up_random_sequence 

CALL Examine_sequence_for_site 
  IF site_found = true THEN LET occurrences = occurrences + 1 

Perhaps these lines encapsulate the logic you might follow if you were to determine the 
frequency of NtcA sites yourself. They may strike you as strange, however: obviously your 
computer was not manufactured with the built-in knowledge of how to make random sequences 
nor how to examine sequences for NtcA sites. Of course, I had to teach the computer how to do 
these things.  

If you scroll down further into the section entitled “Subroutines and Functions”, you’ll see how I 
told the program to make up random sequences. You may be able to glean from the lines within 
the subroutine Make_up_random_sequence that the program goes through a sequence of a 
specified length, one position at a time, and assigns one of four possible nucleotides at random. 
This is probably what you would do too if you had a four-sided coin and a lot of time on your 
hands. 

You couldn’t write this program in True Basic without prior knowledge of the rules of the 
language, but even with no experience, you should be able to get the basic idea of what a well-
written program is trying to do. Furthermore, you should be able to modify such a program in 
simple ways. You will be doing this throughout the summer – modifying working programs to 
understand how important bioinformatic or bioengineering tools work.  

SQ5. What routine in the program do you think generated the lines that appeared on the 
screen when you ran the program? 

SQ6. How do you think you could change the program so that instead of displaying  
   0.27 = fraction of random sequences of length...  

the program instead displays  
 0.27 = fraction of semirandom sequences of length... 

SQ7. How do you think you could change the program so that instead of displaying the 
fraction of random sequences in which sites were found, it instead displays the 
number of random sequences in which sites were found? 

 
 
 



Introduction to Personal Programming with True Basic - 5 

• True Basic has only two types of
variables: strings of unlimited length
and 8-byte floating point numbers. 

• Variables need not be declared.  
• String variables are recognized by

names (up to 31 characters) ending
with the “$” character (e.g. sequence$). 

• Numeric variables are those with names
(of any length) that don’t end with “$”. 

• Special functions are available to do
higher precision math and to
manipulate strings as bit strings. 

• Scalar assignments have the syntax:
LET variable = value 

• “=” has the function of both assign and
logical compare (for both strings and
numbers), depending on context. 

 
II.B. Variables 
Variables may be thought of as boxes into which 
the program throws values. Thinking of them in 
this way avoids certain common miscon-
ceptions. For example, the True Basic statement: 
 LET x = 3 

does not equate the variable x with the number 
three. Rather it puts in a box called x the value 
3. It is perfectly OK to say: 
 LET x = 3  
 LET x = 4 

No contradiction here. The program simply 
writes the number 3 into the box called x and 
then writes the number 4 into that box (erasing 
the previous value). 

SQ8. Predict what will appear if you run the 
following program. Then enter and run it. 

LET x = 3  
LET y = 4  
LET x = y  
LET y = 5  
PRINT x  
END 

Like most languages, True Basic makes a distinction between variables that contain numbers and 
those that contain text. Numeric variables can contain numbers like 10, -3.14, 6.02e23 
(interpreted as 6.02 · 1023). String variables (those that contain text) can hold values like 
“armadillo”, “ten”, or “10” (the symbols “1” and “0”, not the number 10).  

The names of the variables indicate what it can hold. Names that end in “$” hold text, not 
numbers. Names that don’t end in “$” hold numbers, not text. Names can be as long as you like, 
so long as they don’t contain blanks.  

SQ9. Predict which of the following statements True Basic will complain about (because 
they’re syntactically incorrect). Then enter and run the program to find out. Correct 
the offending statements so that they’re OK.  

LET necessity$ = “mother of invention”   
LET one = 2       
LET two$ = 2 
LET three$ = “2 + 2” 
LET four$ = two$ + two$ 
PRINT necessity$, one, two$, three$ 
END  
  



Introduction to Personal Programming with True Basic - 6 

• Arithmetic operators: + - * / ^ 
• Comparisons (strings and numbers):

  =   >   <   >=   <=   <> 
• Logical operators: AND, OR, NOT 
• String operator: & (concatenate) 
• All types of brackets are inter-

changeable:  ( )  [ ]  { }  

• Substrings are numbered from 1,not 0 
• Substrings are accessed:  

     string$[begin:end] 
where begin and end are the termini
of the substring. (If begin < 1, you get
the left portion, if end > length of
string, you get the right portion. 

• Substrings are assigned:  
   LET string$[begin:end] = a$  
If begin > end, then the contents of a$
are inserted with nothing lost. 

• Many string functions are available
(described later).  

II.C. Operators 
For the most part, numbers and numeric variables 
in True Basic are acted on by operators that 
you’re familiar with and parentheses work as 
you’d expect. 
SQ10: Predict the output of the following 

program. Then enter and run it to find 
out the real story. Fool around with the 
numbers until you’re satisfied you 
understand what each symbol means. 

 PRINT “+ and – operators: ”; 5 + 2 - 3  
PRINT “* and / operators and parentheses: ”; 2*(3+4)/6, 2*3+4/6  
PRINT “^: “; 1 + 2^3  
END 

Both numbers and strings can be compared to each other in (mostly) expected ways: 
 IF angle = 2*pi THEN... 
 IF fragment_size > resolution_of_gel THEN... 
 IF restriction_site$ <> “GAATTC” THEN...    ! (<> means not equal) 
 IF dictionary_entry1$ > dictionary_entry2$ THEN... 

Strings can be compared, as shown in the last example, where “greater than” generally means 
“later in alphabetical order”. 

SQ11: Play with the following program, replacing the numbers with other numbers or with  
strings and changing the comparison operators, until you’re convinced you know 
how each symbol works. 

 ! Symbols to choose from: =     >     <     >=     <=     <>  

 IF 1 = 2 THEN PRINT “yes” ELSE PRINT “no” 
 IF “truth” > “Beauty” THEN PRINT “yes” ELSE PRINT “no” 
 END 

Programming in bioinformatics focuses more 
than most types of programming on long strings, 
i.e. DNA or protein sequences. True Basic 
provides a number of ways to access and 
manipulate strings. The most fundamental is the 
extraction of an internal portion of a string. For 
example, if you had stored in genome$ the entire 
6 million-nucleotide DNA sequence of a 
bacterium’s genome and wanted to pull out of it a 
specific gene (whose coordinates you know) you 
might write something like: 
 LET start = 4352066 ! Coordinate of start of gene 
 LET end = 4353115 ! Coordinate of end of gene 
 LET gene$ = genome$[start:end] 



Introduction to Personal Programming with True Basic - 7 

• IF condition THEN  
  statements 
ELSE IF condition THEN   !* 
  statements  
ELSE !* 
  statements 
END IF 

• Statements marked “!*” are optional
!* These statements optional 

A similar syntax is used for altering strings. 

SQ12: Play with the following program, predicting each time what will be the output. Try 
replacing the numbers within the brackets with other numbers, as strange as you 
can imagine (huge numbers, fractions, negative numbers, transcendental 
numbers...) until you have deduced the rules that govern substrings.   
LET string$ = “Give me liberty or give me death”  
LET word$ = string$[9:15]  
PRINT word$  
LET string$[20:19] = “maybe “  
PRINT string$ 
END 

SQ13: Modify the above program so that the printed phrase appears to pose a choice 
between freedom and food. The only changes you are allowed to make are those of 
the form: 

 LET ... = “”  ! Put nothing between the quotes 

II.D. IF blocks 
What distinguishes a computer from a calculator? 
Nowadays, not much, but in principle, the 
defining characteristic of a computer is the ability 
to store instructions and reuse them in an order 
that may be determined at the time of execution.  

True Basic tries to mimic your internal 
deliberations: IF something is true THEN do the 
following things. Otherwise (ELSE) do 
something else. You can see this syntax in action 
in the site search program you examined at the beginning of these notes: 

IF subsequence$[12:14] = "TAC" THEN 
   LET site_found = true 
ELSE  
   LET site_found = false 
END IF  

An idiosyncrasy of the language is that you can write this logical sequence in only one of two 
ways. Either the elements appear on separate lines (as shown above) or they ALL must appear on 
the same line (see example in SQ11). There are ways around this restriction, but they’re not 
pretty. 

You can string together IF statements. Suppose you want to read a file consisting of several 
protein sequences. The file looks like this: 

>INSULIN – HUMAN (GI:4557671) 
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED 
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN 

>INSULIN – COW (GI:124564) 
MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEG 
PQVGALELAGGPGAGGLEGPPQKRGIVEQCCASVCSLYQLENYCN 



Introduction to Personal Programming with True Basic - 8 

 
>INSULIN – ZEBRA FISH (GI:18858895) 
MAVWLQAGALLVLLVVSSVSTNPGTPQHLCGSHLVDALYLVCGPTGFFYNPKRDVEPLLG 
FLPPKSAQETEVADFAFKDHAELIRKRGIVEQCCHKPCSIFELQNYCN 

To teach a program how to interpret this file, you have to devise a strategy yourself. If you could 
see only one line at a time, how would you recognize the beginning of the protein? How would 
you recognize its end?  

SQ14: Pause for a moment and devise such a strategy. 

Here’s a program based on one strategy: 
IF line$[1:1] = “>” THEN 
   LET header$ = line$ 
   LET beginning_of_protein = true 
ELSE IF line$[1:1] = “ “ OR line$[1:1] = “” THEN 
   LET end_of_protein = true 
ELSE 
   CALL Add_aminoacids_to_sequence(line$) 
END IF 

 
You can also nest IF statements (as shown in Simulated_Site_search.Tru). 

SQ15: The program below is supposed to determine whether a name is a nickname or a full 
name. Predict the output of the program for a variety of different names, then run 
the program to see if it works the way you think it should.  

 DECLARE FUNCTION Right$ 

! ********* Input values ************ 
LET name$ = “Horace” 
LET gender$ = “male” 
LET syllables = 2 

 ! ********* Main program ************ 
IF Right$(name$,1) = “y” THEN 
   IF gender$ = “male” THEN 
      PRINT “nickname” 
   ELSE  
      PRINT “full name” 
   END IF 
ELSE 
   IF syllables = 1 THEN 
      PRINT “nickname” 
   ELSE 
      PRINT “full name” 
   END IF 
END IF 

FUNCTION Right$(string$) = string$[Len(string$):Len(string$) 

END 



Introduction to Personal Programming with True Basic - 9 

• Two kinds of loops: FOR and DO 
• FOR variable = begin TO end STEP i

  statements 
NEXT variable 

• The clause STEP i is optional 
• DO WHILE condition UNTIL condition

 statements 
LOOP WHILE condition UNTIL condition 

• The WHILE and UNTIL clauses are
optional 

• You can exit loops from within by
EXIT FOR or EXIT DO statements 

II.E. Loops 
We haven’t run across much in the short 
programs in these notes that a human couldn’t do 
better than a computer. Computers come into 
their own when asked to perform operations 
repetitively, like millions of times.  You can see 
this illustrated in the following loop you saw in 
the program Simulated_Site_Search.Tru (and 
reproduced below).  

The loop specifies that the number 1 is initially 
written into the box called position. The 
subsequent statements are performed until NEXT 
position is encountered. Then position is 
incremented by 1 (2 is written in the box) and 
control loops back to the beginning, to the statement LET base = ... (hence the name “loop”). 
Once position has been incremented so many times that it equals size_of_sequence, 
control passes outside of this loop. Clearly, if the size of the sequence runs into the millions of 
nucleotides, as well it might, then this loop is something a human would not want to do by hand!  

FOR position = 1 TO size_of_sequence 
   LET base = Random_Integer(1,4)         
   !   base = 1 for A, 2 for C, 3 for G, 4 for T 
   LET sequence$[position:position] = bases$[base:base] 
NEXT position 

SQ16. The following program prints the first 100 integers and their squares and square 
roots. Alter the program so that it prints the same information for the second 100 
integers. 
FOR n = 1 TO 100 
   PRINT n, n*n, Sqr(n) 
NEXT n 
END 

FOR ... NEXT loops are convenient when statements are to be performed a set number of times. 
However, there are often cases where you don’t know the number of desired iterations (compare 
“Drive 7 blocks” with.“Drive until you see the red firehouse on the corner”). True Basic provides 
a second means of performing loops, as illustrated by the code below (inspired by code in 
Simulated_Site_Search.Tru): 

LET first_base = 1 
DO 
   (search for a certain target within the sequence) 
   (the value of first_base changes during the search) 
LOOP UNTIL first_base > size_of_sequence 



Introduction to Personal Programming with True Basic - 10 

• Arguments to subroutines are passed by
reference, unless the variables are
enclosed in parentheses 

• Arguments to functions are passed only
by value 

• Functions return only a single value 
• If the name of a function ends in $, a

string is returned, otherwise a number 
• Functions must be declared or defined

prior to invocation 
• The scope of variables in the main

program extend to internal subroutines
and functions unless otherwise
specified 

The same task might have been accomplished with an almost equivalent loop: 

LET first_base = 1 
DO WHILE first_base <= size_of_sequence 
   (search for a certain target within the sequence) 
   (the value of first_base changes during the search) 
LOOP 

(note that “<=” is not an arrow but means “less than or equal”). You’re free to use either form (or 
many other methods), depending on what makes more sense to you. 

SQ17. Run the program listed below, then remove the “!” before DO and LOOP and change 
the program so that it doesn’t crash when you enter a negative number 
! Displays square root of number provided by user 
! Program ends when 0 is entered 
 
DO 
   ! DO 
      INPUT PROMPT “Enter nonnegative number: “: n 
   ! LOOP 
   IF n = 0 THEN EXIT DO 
   PRINT Sqr(n)    ! Sqr() is a built-in function for square-root 
LOOP UNTIL n = 0 
 
END 

 
II.F. Subroutines and functions 
You’ve tied a lot of shoes in your lifetime. If 
you did so according to a single DO or FOR 
loop, it might look like: 
   FOR shoe = 1 TO total_shoes 
      (Instructions how to tie shoe) 
   NEXT shoe 

If so, you’d tie all your shoes all at one sitting 
and then get on with your life. While efficient, 
this is often not the best way to organize one’s 
life; nor is it often the best way to organize one’s 
programs. True Basic offers multiple ways of 
reusing instructions intermittently. I’ll discuss 
two related tools: Subroutines and Functions.2  

Subroutines are blocks of instructions that you can call upon from anywhere in the program. For 
this to work, the program has to be defined, with a block of instructions between one set of SUB 
and END SUB statements, and has to be invoked, with one or more CALL statements. 

                                                 
2 True Basic also supports Pictures (for code invoked to draw graphic images with optional transformations) and 
Handlers (for code invoked when an error in executing the program occurs) 



Introduction to Personal Programming with True Basic - 11 

! *********** CONSTANTS ************ 
LET locale$ = “home” 
   
! ********** MAIN PROGRAM ********** 
! Morning activities 
... 
CALL Tie_shoes(sneakers) 
... 
 
! Activities before going to funeral 
... 
CALL Tie_shoes(black_shoes) 
... 
 
! **** SUBROUTINES AND FUNCTIONS **** 
SUB Tie_shoes(specific_shoes) 
   IF locale$ = “home” THEN 
      (Instructions how to tie shoes at home) 
   ELSE 
      (Generic instructions how to tie shoes away from home) 
   END IF 
END SUB 

Note that the invocation of the subroutine (the CALL statement) may provide within parentheses 
a list of additional information (typically variables or constants) to pass to the subroutine. Each 
invocation may pass different information. The information is associated with variables used by 
the subroutine. In the present example, one invocation of Tie_shoe passes the variable 
sneakers, while another passes the variable black_shoes. The subroutine doesn’t care. Either 
way, it refers to the variable internally as specific_shoes. Any change it may make to 
specific_shoes is reflected in the variable passed by the invoking program. 
 
SQ18.  Predict what the output of the program below, then run the program to confirm 

your prediction.  
LET fake_mRNA$ = “GAAGCUCUU” 
LET original_fake_mRNA$ = fake_mRNA$ 
CALL Tail_message(fake_mRNA$) 
PRINT original_fake_mRNA$, fake_mRNA$ 
 
! **** SUBROUTINES AND FUNCTIONS **** 
SUB Tail_message(mRNA$) 
   LET length_of_mRNA = Len(mRNA$) 
   LET mRNA$[length_of_mRNA:length_of_mRNA+10]= “AAAAAAAAAA” 
END SUB 
 
END 

 
Functions work similarly in many respects as subroutines. The main difference is that, like 
mathematical functions, True Basic functions return a value. For example: 

 



Introduction to Personal Programming with True Basic - 12 

! ****** LIBRARIES AND DECLARATIONS ****** 
DECLARE FUNCTION Tie_shoe 
 
! ********** MAIN PROGRAM ********** 
LET tied_sneakers = Tie_shoe(sneakers) 
 
! **** SUBROUTINES AND FUNCTIONS **** 
FUNCTION Tie_shoes(specific_shoes) 
   (Instructions how to tie shoes) 
   LET Tie_shoes = tied_shoes 
END FUNCTION 
 

Functions are invoked not by CALL statements but merely by the appearance of their names. The 
name is replaced by a value specified by the function (which assigns a value to the name of the 
function), and that value may be used by the invoking program as any constant is used. Since 
there is no handy word like CALL to warn True_basic that a function is being invoked, functions 
need to be DECLAREd before use. Otherwise the compiler cannot distinguish between a function 
invocation and the appearance of a new variable. Unlike subroutines, functions can’t change the 
variables they are passed. 
 
SQ19. Predict what the output of the program below, then run the program to confirm 

your prediction.  
DECLARE FUNCTION Tail_message$ 
 
LET fake_mRNA$ = “GAAGCUCUU” 
LET original_fake_mRNA$ = fake_mRNA$ 
LET tailed_message$ = Tail_message(fake_mRNA$) 
PRINT original_fake_mRNA$, fake_mRNA$, tailed_message$ 
 
! **** SUBROUTINES AND FUNCTIONS **** 
FUNCTION Tail_message$(mRNA$) 
   LET length_of_mRNA = Len(mRNA$) 
   LET mRNA$[length_of_mRNA:length_of_mRNA+10]= “AAAAAAAAAA” 
   LET Tail_message$ = mRNA$ 
END FUNCTION 
 
END 

 
As SQ18 and SQ19 illustrate, subroutines and functions are often interchangeable. You’ll find 
later that subroutines are more powerful, but functions often aid in the readability of the 
program. 
 
III. Structured programming 

III.A. The need for structured programming 

One advantage of personal programming is that you don’t have to adhere to any rules or formats. 
After all, there’s no other person who needs to understand the program. 

Wrong. 



Introduction to Personal Programming with True Basic - 13 

No matter how crystalline the logic of your program may appear right now, in a surprisingly 
short period of time your clarity of vision will disappear into the sands of time and YOU will be 
that other person trying vainly to figure out how in the world your program works. You will want 
to fix errors in your program, make improvements, or describe to others how you made your 
marvelous discoveries. You will stare blankly at opaque code or struggle to piece together shards 
of logic like an archaeologist trying to comprehend an ancient civilization. 

Don’t let this happen to you! The time invested in writing organized, self-documenting programs 
repays itself many times over, and you should at the outset make this investment a habit. 

A case in point. Examine and run the working program called Mystery_program1.Tru. Can you 
guess what it’s trying to do? Could you readily make changes to the program if you wished to 
alter its function? Now look at the program called Mystery_program2.Tru. Believe it or not, the 
two programs are logically equivalent.  

SQ20. Alter Mystery_program2.Tru so that odd-length sequences are always determined to 
be nonpalindromic. (Note: you can do this even if you’re not clear about what 
palindromes are or what of odd-length sequences are) 

 

III.B. The process of writing a structured program 
There are several important elements in writing programs that will enable you to comprehend 
them, maintain them, and improve them, even when you’ve become a stranger to them. 
 
III.B.1. Descriptive names for variables, subroutines, and functions 
What’s this statement mean?  

if a(ucase$(s$)) = z then ... 

Who knows? But you have a chance with this logically equivalent statement: 
 IF palindrome_test(uppercase_sequence$) = true THEN ... 

It does take more time to type descriptive names of variables, but you save pounds of brain cells 
later (and the time to regrow them) otherwise spent trying to figure out incomprehensible code. 
True Basic provides a tool to help you do the right thing. If you like, you can write the entire 
program with some variable named x, then once that’s done you can issue the following 
command in the command box: 
 CHANGE x, length_of_sequence 

Immediately, all instances of the variable x are changed to length_of_sequence. 

III.B.2. Indentation and capitalization 

Bring up the program called Purine_tract.Tru. Here’s an excerpt from it: 
 

do  
if sequence$[left:left] = "A" or sequence$[left:left] = "G" then 
let tract_found = false 
for right = left+1 to length_of_sequence 
if sequence$[right:right] <> "A" and  sequence$[right:right] <> "G" then 
let tract_found = true 
exit for 



Introduction to Personal Programming with True Basic - 14 

You have to admit that the variable names are very nice… and still this program certainly does 
not explode with meaning in your mind. Now go to the True Basic’s command box and type: 
 DO Format 

When you press enter, the program suddenly becomes much clearer! Mind you, it’s still not a 
well structured program, but it’s world’s better than it was a moment ago. 

The primary virtue of the indented program is not mere beauty but functionality. I confess, I tried 
to write the original unindented program as you saw it, but I couldn’t. It was too difficult to trace 
down logical errors. So I wrote it properly formatted and then UNformatted it! You should never 
have to use True Basic’s Format program (except on other people’s programs). Your life will be 
so much easier if you indent as you write. 

It is also useful to have capitalization conventions. Unlike many Unix-inspired languages, True 
Basic doesn’t make distinctions as to upper and lower case. The following two statements work 
equally well, so far as the language is concerned: 
 IF base < end THEN LET base = Complement(base) 
 iF bAsE < eNd ThEn LeT bAsE = cOmPlEmEnT(bAsE) 

I think, however, that readability is substantially improved by adopting the standard conventions 
of capitalizing all key words, leaving all variables in lower case, and capitalizing the first letters 
of functions and subroutines. 

III.B.3. Modularizing the program / Writing in small chunks 
Grandmasters are good at chess not because they can try out mental moves so much faster than 
normal folk but because they recognize important patterns and think in chunks of moves. Expert 
typists can’t think letters or move their fingers much better than the rest of us, but they can type 
whole words at once, in chunks. Ditto with pianists and chunks of notes. The fact is, we humans 
can’t keep a whole lot in our heads all at once. We do best when we construct a hierarchy of 
concepts which we can manipulate at different levels. 

Suppose I had the (rather ambitious) desire to write a computer simulation of my life. I could 
teach the computer how to represent every last thing I did, but if I tried this in a linear fashion, I 
wouldn’t make it past 9:15 am without losing track of what I taught it about 8:30. A better 
approach is to set down the big picture – all the things I want to teach the computer. For 
example: 

! Day_in_the_life 
... 
! ************** MAIN PROGRAM ************* 
CALL Wake_up 
CALL Get_out_of_bed 
CALL Drag_a_comb_across_my_head 
... 
! ******* SUBROUTINES and FUNCTIONS ******* 
SUB Wake_up 
END SUB 
SUB Get_out_of_bed 
END SUB 
SUB Drag_a_comb_across_my_head 
END SUB 



Introduction to Personal Programming with True Basic - 15 

In writing my program this way, I accomplish several important things: (1) I can see at a glance 
of the Main Program all that the program intends to accomplish, (2) I have broken down a 
behemoth task into small, doable chunks, (3) I have thereby made the debugging process much 
easier, since I can test each component to my satisfaction before moving on to the next chunk. 
For this program to run without True Basic objecting, it’s necessary to put in fake subroutine 
definitions, called stubs. Initially, they can be empty or if it helps debugging, you can put within 
them messages like PRINT “Wake_up called”.  

The process of modularization can be extended to the program as a whole. I’ve found it useful to 
organize programs around a template, which you can see in Template.Tru. There’s nothing 
sacred about this organizational scheme. If you have one that works better, by all means use it. 
But if you don’t have one that works better, you’re highly advised to use this one. Time spent 
organizing code is time not spent rewriting forgotten code.  

If you revisit the programs entitled Mystery_program1.Tru and Mystery_program2.Tru, you’ll 
note that one is considerably longer than the other. It obviously took significantly greater effort 
to write the second program than the first. The thought of expending such effort for every 
program must give one pause. 

The payoff is that code that is well organized, well documented, and well tested, is code that can 
be well used and reused. True Basic permits you to incorporate prewritten code into your 
program with LIBRARY statements. Need to test for palindromic sequences in a program you’re 
writing? Already wrote such a routine? Then insert the following statement into your program: 
 LIBRARY “Palindrome_test.Tru” 

Whatever is in that file is now available to your program. If you invest time in building good, 
modular tools, you can rapidly piece them together to make complicated but reliable programs. 
 
III.B.4. Documentation 

You may have a program organized to the highest degree, with variables cleverly named and the 
most exquisite indentation, but still not be able to understand what the program’s trying to do. 
There’s sometimes no substitute for straightforward comments at critical junctures in the 
program. At minimum, the beginning of the program should contain a description of the overall 
purpose of the program, it’s broad strategy, and (if applicable) the format of the input and output. 
It isn’t overkill to provide the same information for each function and subroutine. 

While documentation takes time, bear in mind that a quick-and-dirty program is generally weeks, 
maybe days, away from turning into an old-and-dead program. 

  


