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Abstract

An increasing number of recent studies involve the fitting of mechanistic models to ecological time-series. In some cases, it is
necessary for these models to be discrete-time approximations of continuous-time processes. We test the validity of discretization in
the case of measles, where time-series models have recently been developed to estimate ecological parameters directly from data. We
find that a non-homogeneous contact function is necessary to capture the host—parasite interaction in a discrete-time model, even in
the absence of heterogeneities due to spatial or age structure. We derive a mathematical relationship describing the expected
departure from mass-action transmission in terms of the epidemiological parameters in the model, and identify conditions under

which the discretization process may fail.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Continuous-time models, both deterministic (Ander-
son and May, 1979, 1991; Murray, 1989) and stochastic
(Bartlett, 1960, 1961; Mollison et al., 1994) have a long
history in the study of biological systems. Relatively
simple sets of coupled equations may be used to model
the mechanisms underlying a continuously changing
system. In many real-world systems, it is difficult to
measure (or even identify) all state variables, and instead
measurements are made of a single variable at discrete
time intervals. This time-series can then be fitted to a
mechanistic discrete-time model, of which the Nichol-
son—Bailey host—parasite model (Nicholson and Bailey,
1935) is an early example. While discrete-time models
are often better suited to the available data, not all
simple discrete-time models successfully reproduce the
dynamics of the standard continuous-time models
(Mollison and Din, 1993). It is important to examine
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the effect that the discretization process has on model
behaviour before conclusions can be drawn from the
time-series analysis.

To address this question, we need to analyse systems
for which rich time-series are available, and which are
sufficiently well understood for realistic discrete- and
continuous-time models to be made. Measles is a perfect
case study for this investigation, with its extensive
notification time-series (Grenfell and Harwood, 1997)
and relatively simple natural history. A family of
continuous-time models based on the susceptible—
infective-recovered (SIR) paradigm successfully capture
the recurrent pre-vaccination sequence of measles
epidemics and the impact of vaccination (Anderson
and May, 1991; Schenzle, 1984; Earn et al., 2000). Early
attempts to construct discrete-time models of measles
(Fine and Clarkson, 1982) have been found to display
unsatisfactory dynamics (Mollison and Din, 1993),
failing to capture the strong biennial cycle seen in
numerous pre-vaccination data sets (e.g. England and
Wales, New York, Baltimore). A recently developed
discrete-time model allows for the estimation of
epidemiological parameters (notably the seasonality in
transmission rate) directly from disease time-series
(Finkenstddt and Grenfell, 2000). This time-series SIR
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(TSIR) model successfully bridges the gap between
mechanistic models and time-series data, capturing
many of the salient features of pre-vaccination measles
in large cities (Bjornstad et al., 2002; Grenfell et al.,
2002). In the light of the earlier difficulties with discrete-
time models, a thorough investigation of the dynamical
behaviour of the TSIR model over the range of
parameter values seen for measles is crucial for
interpreting the time-series analysis.

Of particular interest are the intriguing departures
from homogeneous ‘mass-action’ transmission discov-
ered in Finkenstddt and Grenfell (2000). These findings
could represent important evidence of population
manifestations of spatial heterogeneity in infection.
However, we first need to examine whether the
discretization of the dynamics inherent in this time-
series model affects estimates of mass-action transmis-
sion.

This paper begins with a discussion of current measles
models, and then provides a comprehensive compar-
ison of the time-series model with the more established
continuous-time model. It becomes apparent that the
use of a non-homogeneous contact function in discrete
time is crucial for modelling mass-action transmission
in continuous time. We provide a mathematical ana-
lysis of the relationship between the contact functions
of the two models, and consider the consequences
of significant changes to the system such as that induced
by measles vaccination. Our findings raise important
issues for a large class of discrete-time ecological
models.

2. Models

During the pre-vaccination era, measles dynamics in
large cities were predominantly periodic, showing
annual, triennial, but most commonly biennial cycles
(Grenfell et al., 2002). Following the introduction of
mass vaccination in the 1960s, measles dynamics became
more irregular, and possibly chaotic (Godfray and
Grenfell, 1993). These varied dynamics can be captured
by a very simple continuous-time SIR model (see
Anderson and May, 1991; Schenzle, 1984):

S = —b()S(HI(t) + m(1 — S(1)),
[ =b)S()I(1) — (m+ ¢)I(?),
R = gI(t) — mR(), M

where m is the birth rate, g the recovery rate and b(¢) is a
time-varying transmission parameter of the form b(z) =
bo(1 + by cos(2xt)) with period 1 year, designed to model
the variability in transmission rate induced by the school
year. In the above form, S, I and R represent the
fraction of the population that is susceptible, infected

and recovered at any time, and the population size is
assumed constant (thus S+ 7+ R = 1) allowing us to
concentrate only on the susceptible and infected
dynamics. The model is simulated with g = 0.077, by =
1.308 and b, = 0.08, corresponding to the epidemiolo-
gical parameters for measles of an exposed and
infectious period of 13 days, a reproductive ratio of
17, and 8% seasonal forcing.

Earn et al. (2000) demonstrated that both the
between-city variability in period of oscillation before
vaccination, and the within-city transition following
vaccination, can be explained as bifurcations of this
nonlinear model in a single parameter. The bifurcation
diagram in Fig. 1(a) shows the stable periodic cycles for
the SIR model for m in the range 0-0.05. Before
vaccination, cities with high birth rates (e.g. Liverpool)
showed annual cycles and cities with lower birth rates
(e.g. London) showed biennial cycles. Following vacci-
nation (which effectively drops the susceptible recruit-
ment rate), both cities display irregular dynamics that
can be explained as switching between multiple stable
cycles (see Earn et al. (2000); Keeling et al. (2001) for
more detail on this).

While simple continuous-time models have been
highly successful in reproducing the dynamical beha-
viour seen in measles time-series, they are not particu-
larly suitable if the parameters of sub-models of
biological processes (such as seasonality in transmission
and effects of spatial and age structure in the popula-
tion) are to be estimated from time-series data. In order
to better exploit the available data, Finkenstddt and
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Fig. 1. Bifurcation diagrams of yearly peak height of the proportion of
infected individuals against birth rate for (a) the continuous-time SIR
model (1), (b) the discrete-time model (3) with 4 =1, and (c) the
discrete-time model with 4 = 0.976. Annual cycles are shown in black,
biennial cycles in blue and higher period cycles in red. The cycles
shown are the stable orbits found after numerical simulations of the
model for a range of initial conditions.



K. Glass et al. | Journal of Theoretical Biology 223 (2003) 19-25 21

Grenfell (2000) introduced the stochastic discrete-time
TSIR model:

Si=M_g+ S — I +u,
I, =B, z“—IS;/qgt, (2

where I, and S, are the numbers of infectious and
susceptible individuals, respectively, at time ¢, f§, is a
time-varying transmission parameter with period 1 year,
M, denotes births (time-delayed to take account of
maternal immunity), o and y are scalars estimated from
data, and u,, ¢ are random variables with mean zero.
For data from England and Wales, the parameter o was
estimated to be 0.97 (slightly but significantly less than
1), and this model has subsequently been used to analyse
spatio-temporal waves of infection in England and
Wales (Grenfell et al., 2001).

To compare the stochastic TSIR model (2) with the
deterministic continuous-time SIR model (1), we ignore
the stochastic components (u;, ¢;) and use the determi-
nistic skeleton:

Sl+T = Sz - Ir+T + M(l - St),
I 7 = B(OS,I. (3)

Here, S; and I, now represent the fraction of the
population that is susceptible and infected, respectively,
at time ¢, T is a time step of 2 weeks dictated by the
sampling period of the data, and A4 is a scalar (4 =1
giving the standard mass-action transmission). Indivi-
duals are infected for a single time step of 14 days, which
matches the epidemiological assessment of 13 days
reasonably well. As Finkenstddt and Grenfell (2000)
were not able to estimate the value of the exponent y in
(2), and the model is not sensitive to changes in this
parameter, we assume y = 1. To remove any effects of
changes in the birth rate over time, we use a fixed birth
rate, M (maintaining a constant population size). B(¢) is
a time-varying function of the form B(¢) = By(1 +
By cos(2nt)) designed to model the seasonal variation
in transmission induced by the school term. Represent-
ing the annual variance in transmission rates as a
sinusoidal function is a simplification of the underlying
real-world dynamics. However, while on—off functions
that mimic the school term (Schenzle, 1984) fit the
England and Wales data more accurately, when
comparing models (1) and (3), modifying the form of
the function did not change the results. All three
models described here combine exposed (i.e. infected
but not yet infectious) and infectious individuals in
one class. Although susceptible—exposed-infectious—
recovered (SEIR) models are more biologically realistic,
their dynamical behaviour does not differ significantly
from SIR models in the case of measles (Keeling et al.,
2001).

3. Results

For a birth rate of m = 0.02 (corresponding to
M = 0.02T) the continuous-time model (1) exhibits
biennial cycles, as do the observed time-series in Earn
et al. (2000). However, the discrete-time model (3) under
the mass-action assumption (that is, with 4 =1),
exhibits different periodic cycles for different initial
conditions (see Fig. 1(a) and (b) with m = 0.02). If the
mass-action assumption is relaxed, and A is varied to fit
the discrete-time biennial cycle to that of the contin-
uous-time model using least squares (with all other
parameters fixed), 4 is estimated to be 0.976, and the
discrete-time model displays biennial cycles only (see
Fig. 1(c) with m = 0.02). For these parameter values at
least, a non-homogeneous contact function in discrete
time better mimics homogeneous mass-action in con-
tinuous time. It might be supposed that some of the
discrepancy between the discrete- and continuous- time
SIR models lies in the distribution of the infectious
period, which is exponential in the case of model (1) and
has a fixed length in the case of (3). Re-estimating A4 for
a continuous-time SEIR model with fixed infectious
period (see Keeling and Grenfell (1997) for details of
this model) gave an estimate of 0.982. For comparison,
the estimation of 4 for the SEIR model with exponen-
tially distributed infectious period was 0.976. The
discrete-time model with each of these values of 4 has
a unique stable (biennial) cycle.

Analysis of the discrete-time model with constant B
indicates that reducing 4 from 1 increases the stability
of the equilibrium. This leads to a greater tolerance to
environmental noise. Fig. 2 shows the perturbation to
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Fig. 2. The perturbation to the biennial cycles of the continuous-time
model (—), the discrete-time model with 4 = 1 (---) and the discrete-
time model with 4 =0.976 (---) under (a) additive and (b) multi-
plicative noise. The perturbation is measured as the sum of squares of
the difference in the number of infectives of the noisy and noise-free
cycles, averaged over 100 simulations.
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the biennial cycle produced by introducing -either
multiplicative or additive noise into the I, component
of the model (thus either /,(1 + y,) or I, + y,, where g,
has mean zero). Clearly, the discrete-time model has a
higher tolerance to noise with 4<1.

This increased stability has a dramatic effect on the
bifurcation diagram (Fig. 1(c)). Although the discrete-
time model with 4 = 0.976 has a qualitatively similar
structure to the continuous-time model in the neigh-
bourhood of m = 0.02, it does not have the same
complicated bifurcation structure seen for low birth
rates. On the other hand, the discrete-time model with
mass-action transmission does exhibit the multiple co-
existing cycles for low birth rates. An additional
unexpected property of the discrete-time model with
fixed 4<1 is that the mean proportion of susceptibles
varies with birth rate to a much greater degree than that
of the continuous-time SIR model, the continuous-time
SEIR model or the continuous-time SEIR model with
fixed infectious period.

An explanation for these results is found by deriving a
Taylor-series expansion for the dynamics of the
continuous-time SIR model about the equilibrium, and
equating terms in the expansion with those of an
expansion of the discrete-time model, as described
in detail in the appendix. A first-order expansion in
the time step returns the mass-action solution. When
second-order terms are included, however, the mass-
action assumption breaks down. Equating the
largest terms in the expansion produces the relation-
ship

A=1-1mT*b—-m—yg).

If the time step 7T is approximately equal to the
infectious period, this relationship can be expressed as

Ax 1 -1 M(Ry - 1)
~1- %*(recruitmenl rate) = (interaction rate),

where Ry is the reproductive ratio of the disease. Thus,
we expect the transmission term to differ most from
mass-action when there is a high birth-rate, and
approach mass-action when recruitment rates are low,
as seen following vaccination.

A more accurate solution of the Taylor-series expan-
sion can be found by equating all second-order terms in
the expansion. In this case, there is no simple algebraic
solution, but numerical solutions show the same
relationship between 4 and birth rate. Fig. 3(a) gives
the numerical solutions for 4 for a range of birth rates,
m (with b, g and T fixed) and Fig. 3(b) shows the values
of A for fixed m, g and T, letting b(¢) vary sinusoidally
over 1 year. We see that 4 decreases with birth rate, and
varies over the year proportionally with —b(z). If
parameter values are assigned according to this method,
the bifurcation structure and mean level of susceptibles
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Fig. 3. Optimal values of A calculated using a Taylor-series

approximation (a) with varying birth-rate and (b) over an annual
cycle with sinusoidally forced transmission rate.

reproduces that of the continuous-time model much
more closely.

While this result is specific to a comparison of the
discrete-time model with simple continuous-time mod-
els, a search through phase space for regions of biennial
cycles and higher order cycles demonstrates that as A
decreases from 1 the model passes from higher order
cycles to biennial cycles to annual cycles (see Fig. 4).
Increasing the level of seasonal forcing expands the
region of interest somewhat, but maintains the same
structure.

In Fig. 5, we apply these results to data from London.
Fig. 5(a) shows the observed bi-weekly cases corrected
for under-reporting (see Bjernstad et al. (2002) for
details of the data). Superimposed on this time-series is
the effective birth rate for London (that is, the birth rate
adjusted by the vaccination rate) scaled to fit the y-axis.
Applying the logarithm transformation (Box and Cox,
1964) the TSIR model (2) becomes a linear regression
model, from which we estimate the value of o for the
pre-vaccination London data to be 0.97. Fig. 5(b) and
(d) show the deterministic realization and bifurcation
diagram for the TSIR model with « = 0.97. We see that
the model captures the annual-biennial transition with
the change in birth rate in the pre-vaccination data, but
shows stable annual cycles post-vaccination. For com-
parison, the TSIR model is simulated with a higher o
(Fig. 5(c) and (e)). In the pre-vaccination era, the
amplitude of oscillation is too high, and the fit to the
data does not mimic the dynamics of the real system as
well as that of o = 0.97. For the post-vaccination era,
however, the higher value of o leads to dynamics that
switch between multiple orbits, which shows a better
qualitative agreement with the data.
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Fig. 4. Plots showing the distribution of periodic cycles in parameter space. Top row shows birth rate of 0.01, bottom row shows birth rate of 0.02.
Columns from left to right have 4%, 8% and 12% seasonal forcing. Cycles are shown as: annual (-), biennial (+) and cycles of period 3 and above ().

4. Discussion

This study highlights a modelling difficulty that is
relevant to a large class of biological systems. While
real-world interactions occur continuously in time, data
are sampled only at fixed time points. Discrete-time
models that are well suited to estimating biological
parameters from such time-series may fail to capture the
continuous-time dynamics fully. In the case of measles,
where simple continuous-time models reproduce very
successfully many facets of the epidemiological dy-
namics, it is possible to consider in detail the con-
sequences of the discretization process.

Firstly, as has already been noted by Mollison and
Din (1993), the simplest discretization fails to exhibit the
appropriate dynamics. In order to successfully repro-
duce pre-vaccination measles dynamics in discrete time,
it is necessary to collapse the mass-action assumption.
An explanation for this result may lie in the slow
buildup of infection in a discrete-time model with mass-
action. At the start of an epidemic, when numbers of
infected are low and numbers of susceptibles high, the
continuous-time model displays a sharp increase in the
number of infected individuals. With a 2-week time step,
the discrete-time model cannot display this form of
rapid feedback, and under mass-action, infection builds
up more slowly. The non-homogeneous transmission

function gives increased weight to small numbers of
infectives, thus allowing an epidemic to take off more
rapidly. If the time step was to be increased further
(from fortnightly to monthly, for example), the analysis
suggests that there would be an even greater departure
from mass-action transmission. While the exact relation-
ship between the time step and the transmission function
is specific to the measles model, this result highlights an
issue that is generic to models of predator—prey
interactions (the Lotka—Volterra model, for example).
Simple discretizations of continuous-time models will
work well if the time step remains short. As the
difference between the time step and the response time
of the contact function increases, however, it may
become necessary to modify the contact function to
model the predator—prey interactions accurately.

A caveat that arises from this study is that while
spatial heterogeneity and age structure can result in
contact rates that do not follow a simple mass-action
form, the fact that a non-homogeneous transmission
function is required to describe a time-series does not
necessarily imply that there are heterogeneities in the
system. In the case of pre-vaccination measles, we have
demonstrated that a non-homogeneous discrete-time
model is required to reproduce dynamics of a homo-
geneous continuous-time model. A value of a<l
estimated from time-series data does not necessarily
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Fig. 5. A comparison of the TSIR model with measles data from London. (a) shows the observed bi-weekly cases, with the effective birth rate (the
birth rate adjusted by vaccinations) superimposed above it. (b) and (d) show the time-series and bifurcation diagram, respectively, for the TSIR
model with « = 0.97. (c) and (e) give the time-series and bifurcation diagram for the model with o = 0.99.

require a mechanistic interpretation, as it may arise as
an artifact of the discretization process.

A further lesson is that models must capture the
appropriate biology. Here, models that give very similar
results when compared for one part of parameter space
are dramatically different in others. It is clear that for
greatly altered birth-rate, or data collected after vaccina-
tion, it is necessary to re-estimate the contact function. By
finding an approximation to the contact function
required to mimic a simple homogeneous model with
no age structure, we provide a baseline function that can
be compared against those estimated from real-world
data. Although the relationship found here is specific to
the SIR model, we have seen that the post-vaccination
measles data are more closely reproduced by dynamics
that switch between cycles of different periods than by
stable annual or biennial cycles. The general structure of
orbits seen in Fig. 4 suggests that when the TSIR model is

used to simulate post-vaccination measles dynamics,
either the transmission function should be adjusted to
be closer to mass-action or the amplitude of seasonal
forcing should be increased.
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Appendix

To derive the Taylor-series expansion, we assume
I, = I+ Ji Si=S+ K, I(t) = 1+ J(t)a S() = S+ K(2),
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where (S, I) and (S, ]) are the equilibria of the TSIR and
the continuous-time SIR models, respectively. Note that
unless 7' = 1/(m + g), these equilibria may not coincide
exactly. We instead consider the dynamics about the
equilibria by finding expansions for J,, 7 and J(¢t + T) of
the form

Jiir = CiJi + CK, + C3J K, + CiJ} + CsK7,

Jt+T)=c1J(@)+ 2K () + c3J()K(F)
+ e () + esK(t)

using a Taylor-series expansion in the case of the
continuous-time model, and a binomial expansion in the
case of the discrete-time model. In the above equations,
ci(b,m,g,T) and Ci(B,A, M, T) are series in T and we
assume that M = mT. Considering only first-order
terms in 7" we have

b
a=1, co=mT|l——-1,
m+g

c3=bT, c4=10¢5=0,
_ A
C,=A, GC,= B, C3:§,
A(A - 1)
Ci=—""_"" (C5=0.
4 Vi 5 5

Equating ¢; = C; we obtain A = 1, B(t) = b(t)T, with an
exact fitif T = 1/(m + g). When second-order terms (i.e.
those involving 7?) are included, there is no simple
algebraic solution for 4 and B if all five terms are used.
Equating ¢; = C; and ¢, = C, only, we derive

A:If%mTz(bfmfg),

bT(1+§mT — mTt

1—ImT*(b—m—g)’

Note that 4 is a decreasing function of m. Finding the
optimal fit to all five terms can be found numerically by
minimizing Zle(ci — C;)? over A and B for fixed values
of b, g, m and T, assuming M = mT. Fig. 3(a) gives the
optimal values of 4 for a range of birth rates, m (with b,
g and T fixed) and Fig. 3(b) shows the optimal A4
for fixed m, g and T, letting b(¢) vary sinusoidally over
1 year.
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