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The availability of genome-scale gene expression data sets has initiated the development of methods that use this data
to infer transcriptional regulatory networks. Alternatively, such regulatory network structures can be reconstructed
based on annotated genome information, well-curated databases, and primary research literature. As a first step
toward reconciling the two approaches, we examine the consistency between known genome-wide regulatory
network structures and extensive gene expression data collections in Escherichia coli and Saccharomyces cerevisiae. By
decomposing the regulatory network into a set of basic network elements, we can compute the local consistency of
each instance of a particular type of network element. We find that the consistency of network elements is
influenced by both structural features of the network such as the number of regulators acting on a target gene and
by the functional classes of the genes involved in a particular element. Taken together, the approach presented
allows us to define regulatory network subcomponents with a high degree of consistency between the network
structure and gene expression data. The results suggest that targeted gene expression profiling data can be used to
refine and expand particular subcomponents of known regulatory networks that are sufficiently decoupled from the

rest of the network.

[Supplemental material is available online at www.genome.org.]

Reconstructing regulatory networks for model organisms has
emerged as one of the central tasks in postgenomic biology
(Banerjee and Zhang 2002; Stormo and Tan 2002; Wyrick and
Young 2002). For well-studied organisms such as Escherichia coli
or Saccharomyces cerevisiae, there is already a wealth of useful
information available in databases and the primary literature
that can be used to build large-scale regulatory network struc-
tures from individual regulatory interactions (RIs; Guelzim et al.
2002; Shen-Orr et al. 2002). In recent years, much excitement has
been generated by high-throughput experimental techniques
such as genome-wide expression profiling (DeRisi et al. 1997;
Eisen et al. 1998; Hughes et al. 2000) and location analysis (Ren
et al. 2000; Iyer et al. 2001; Lee et al. 2002) given the promise that
these techniques have to allow for rapid reconstruction of regu-
latory networks.

The utilization of the high-throughput data types on their
own as well as in combination with promoter sequence analysis
has been shown to provide a powerful platform for regulatory
network reconstruction (D’Haeseleer et al. 2000; de Jong 2002;
Lee et al. 2002; Wang et al. 2002). However, the network recon-
struction task is hampered by the enormous number of potential
regulatory network structures that are generated and must be
searched in order to identify the structure that is most consistent
with the data sets. A variety of different computational frame-
works has been proposed for this structural search task including
Bayesian networks (Hartemink et al. 2001; Pe’er et al. 2001), com-
binatorial approaches (Ideker et al. 2000), and methods based on
linear models (Yeung et al. 2002; Tegner et al. 2003). Alterna-
tively, methods have been developed to identify coregulated
gene modules from large-scale gene expression data (Ihmels et al.
2002; Segal et al. 2003). Despite significant progress in these data-
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driven reconstruction methods, the combinatorial expansion in
the number of potential network structures still presents a major
challenge for network reconstruction.

An approach to overcome this shortcoming of purely data-
driven reconstruction methods would be to start with what are
considered to be established regulatory network structures and
use the new data sets to refine and expand these structures. The
challenges associated with this approach are that the individual
RIs comprising the known network structures have been estab-
lished using a variety of different experimental methods and not
all the interactions have been equally thoroughly studied. Data-
bases representing these interactions are also likely to be incom-
plete and contain errors as a result of misinterpretation of results
provided in experimental papers. In addition, we do not actually
know which subcomponents of the known networks have been
probed by high-throughput experiments and how much infor-
mation these experiments provide about these subcomponents.
Hence, the natural first step toward reconciling known regula-
tory network structures with high-throughput data sets is a com-
prehensive validation of these structures against the heterog-
eneous data sets that they can be derived from. This validation
task will culminate in the identification of consistent and bio-
logically meaningful network subcomponents that can be effec-
tively expanded using high-throughput data sets. We have thus
undertaken the present study to accomplish such validation or
regulatory networks through systematic reconciliation of mul-
tiple data sources.

To our knowledge, this study is the first attempt to compre-
hensively evaluate the consistency between known regulatory
network structures and gene expression data at the genome scale.
Previously, the coherence of expression of genes in the same
operon in E. coli has been studied (Sabatti et al. 2002), but the
study was not extended to regulons or other types of network
elements. In Kim et al. (2000), an approach for evaluating the
agreement between regulatory network structures and gene ex-
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pression data based on discretized data and the perceptron algo-
rithm is presented and applied to a small number of known tran-
scription factor target genes in a myeloid cell line utilizing a
small gene expression data set. General approaches for incorpo-
rating prior biological knowledge in the form of known regula-
tory network structures into reverse-engineering of regulatory
networks have also been described (Hartemink et al. 2002; Chris-
man et al. 2003), but they have not been applied to the large-
scale data sets analyzed in this study. Previously established net-
work structures have also been utilized in order to derive kinetic
parameters for regulatory networks based on gene expression
data (Ronen et al. 2002), but this approach requires much higher
quality and better time resolution data that are currently com-
monly available.

RESULTS

The known regulatory network structures based on existing regu-
latory network reconstructions for E. coli (Shen-Orr et al. 2002)
and yeast (Guelzim et al. 2002) were obtained as described in

Methods. The regulatory network structures were represented as
directed bipartite graphs with RI edges between a regulator node
and a target gene node, with the mode of regulation (activation,
repression, or dual/unknown) indicated for each interaction. The
E. coli network has 123 regulatory genes regulating 721 target
genes through 1367 RIs, whereas the yeast network has 107 regu-
latory genes regulating 413 target genes through 925 Rls. Because
of the existence of a comprehensive database on transcriptional
regulation for E. coli, RegulonDB (Salgado et al. 2001), the E. coli
regulatory network is more complete and better validated than
the yeast network used in this study.

We used gene expression data (1024 separate experiments
for yeast, 163 experiments for E. coli) preprocessed and normal-
ized as described in Methods organized into one large compen-
dium data set for each organism. The total number of experi-
ments or conditions in each compendium after preprocessing
was 904 for yeast and 141 for E. coli. These data compendia in-
clude the majority of the publicly available gene expression data
for both organisms. The data sets represent a large number of

different experimental conditions in or-
der to avoid a priori biasing our study
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expression data in both organisms allows
us to utilize the complementary strengths
of the data sets for each organism.
Computing the consistency be-
tween known regulatory network struc-
tures and gene expression data requires
decomposing the networks into building
blocks or elements whose local consis-
tency with the expression data can be
evaluated. There were four basic types of
regulatory network building blocks ana-
O lyzed in this study (Fig. 1A): (1) regulator
modules (RMs), (2) multiregulator mod-
ules (MRMs), (3) RIs, and (4) target mod-
ules (TMs). A RM is defined as the set of
all target genes for a single transcrip-

Figure 1 (A) Regulatory network elements or building blocks studied. The element types are classi-
fied into those involving only target-target relationships and those involving only regulator-target
relationships. For each type of element, a diagram illustrating a typical element structure is shown. The
black triangles are transcriptional regulators, and yellow boxes are transcription factor target genes.
The red and green arrows correspond to repressing and activating regulatory interactions respectively.
The consistency measure used to evaluate the agreement between a particular element and gene
expression data is also indicated. Feed-forward loops are not considered to be a basic building block
of the network, but are included here because ignoring them could lead to overestimating the con-
sistency of regulatory interactions. (B) A schematic illustration of the strategy used to calculate the
statistical significance of a particular value of a consistency measure (in this case Pearson correlation
coefficient for a regulatory interaction). A set of random network elements corresponding to the
particular network element studied is created, and the same consistency measure is calculated for each
random element. The resulting distribution of values is used to evaluate the statistical significance of
the true value of a consistency measure in the form of a P-value. The P-value is computed as the fraction
of random elements with the squared consistency measure value higher than the squared observed
value for the actual element. This corresponds to the estimated probability of observing a squared
consistency measure value as high as the one for the actual element for a regulatory network element

with random regulator and target genes.
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tional regulator following Wang et al.
(2002), who call these network elements
regulatory modules. The RM also corre-
sponds to the traditional notion of a
regulon (Wagner 2000). A MRM is de-
fined as the set of target genes that share
the same set of regulators corresponding
to the notion of a complex regulon. The
MRM represents a group of genes that
according to the knowledge encoded in
the reconstructed regulatory network
structure should be coregulated under
all conditions. A RI is defined as a single
regulator—target pair. A TM is defined as
a single target gene together with all of
its transcriptional regulators.



Reconciling Expression and Regulatory Networks

The network elements studied in this work can also be re-
lated to the three fundamental regulatory network motifs—feed-
forward loops, single-input modules, and dense overlapping
regulons—that have been identified in the E. coli regulatory net-
work (Shen-Orr et al. 2002). Single-input modules are a specific
case of the MRM with only one regulator acting on the target
genes in the module. Dense overlapping regulons correspond to
combinations of the MRMs whose overall consistency could be
estimated from the consistencies of the component modules.
The dense overlapping regulons in both networks tend to be
relatively large and do not represent a sufficiently fine-scale sub-
division of the network for our purposes. Feed-forward loops
were not included in the set of basic network building blocks
studied in this work. However, the effect of specifically account-
ing for feed-forward loops was studied separately as ignoring
these loops could potentially lead to overestimating the number
of consistent RIs as described below.

For each instance of the four types of network building
blocks present in the network, we computed a consistency mea-
sure that indicates the level of support the gene expression data
provides for the particular regulatory network element structure.
After testing a number of different consistency measures for each
type of network element, we decided to utilize a set of measures
based on correlation coefficients in order to provide a coherent
framework for the study (Fig. 1A and Methods). The consistency
measures were adjusted for each instance of a regulatory network
building block by weighting the gene expression data sets prior

to computing the consistency measure as described in Methods.
Experiments or conditions particularly informative about the
genes forming the particular building block were preferentially
weighted. The weighting process was necessary because for any
specific regulatory network element most experiments in the ex-
pression data compendia did not significantly induce or repress
any of the genes involved in the element. Without any weighting
of the expression profiles, the largely random background vari-
ability in these noninformative experiments would lead to sig-
nificant underestimation of the number of consistent network
elements. The weighted expression profile approach is similar to
the one utilized in (Thmels et al. 2002) to calculate “condition
scores” for a set of potentially coregulated genes in order to iden-
tify modules of coregulated genes in the yeast genome using a
large expression data compendium.

The statistical significance (reported as a P-value) of a par-
ticular value of a consistency measure was determined by a non-
parametric randomization test based on comparing the observed
value to a distribution of consistency measure values calculated
for a large number of appropriate randomized network elements
as described in Methods (Fig. 1B). The randomization procedure
allows us to make conclusions that do not depend strongly on
the particular consistency measures chosen. The fraction of regu-
latory network elements of a particular type with P-value lower
than a given threshold value is used below as the actual measure
of consistency for this type of element (Figs. 2, 3). While the
results did not depend strongly on the P-value cutoff for reason-
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Figure 2 Summary of the results of the consistency calculations for Escherichia coli. The results are presented in the form of fraction of consistent
network elements for three different significance levels (P < 0.01, P <0.005, P < 0.001). (A) Results for regulator modules classified by the mode of
regulation of the regulator acting on the module. All, all modules with more than one target gene (number of regulator-target pairs n = 1355); Act,
activator-regulated modules (844); Rep, repressor-regulated modules (455); Dual, dual function regulator-regulated modules (61). (B) Results for
multiregulator modules shown for all modules as well as modules with different numbers of regulators (n,.,). The results are only shown for cases with
>10 instances of the module with the indicated number of regulators. The total number of target genes in multiregulator modules with more than one
target is 658, and the numbers of target genes in multiregulator modules with different numbers of regulators are (in format: number of regulators
[number of targets with this number of regulators]): 7 (368), 2 (142), 3 (71), 4 (46), and 5 (23). (C) Results for regulatory interactions classified by the
mode of the regulator. The numbers of regulatory interactions in the network are: All (1367), Act (855), Rep (451), and Dual (61). In addition to the
P-value threshold, results are also shown for consistency criteria utilizing both P-value threshold and sign criteria (s) as described in the text for pairwise
correlations. (D) Results for target modules classified by the number of regulators acting on a target gene. The results are only shown for cases with >10
instances of the module with the indicated number of regulators. The numbers of target modules with different numbers of regulators are (in format:
number of requlators [number of targets]): 1 (386), 2 (168), 3 (77), 4 (54), and 5 (25).
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Figure 3 Summary of the results of the consistency calculations for yeast. See the caption of Figure 2 for explanations of the legends and abbreviations.
(A) Results for regulator modules. The numbers of regulator-target pairs are: All (907), Act (643), and Rep (264). (B) Results for multiregulator modules.
The numbers of target genes in multiregulator modules with different numbers of regulators are: All (269), 1 (155), 2 (73), 3 (33), and 4 (8). (C) Results
for regulatory interactions. The numbers of interactions are: All (925), Act (651), and Rep (274). (D) Results for target modules. The numbers of target
genes with different numbers of regulators are: All (413), 7 (173), 2 (113), 3 (72), and 4 (23).

able choices of cutoff values (0.001-0.05), the Supplemental Ma-
terial (available online at www.genome.org) includes figures that
show the dependency of the fraction of consistent network ele-
ments as a function of the P-value cutoff for a larger range of
values than those shown in Figures 2 and 3.

The four types of basic building blocks described above can
be divided into two classes—ones involving only putatively co-
regulated target genes (RM and MRM), and ones involving both
targets and their regulators (RI and TM). The significance of this
division is to separate the calculations involving target-target
correlations in gene expression (RM and MRM) from calculations
involving regulator-target correlations (RI and TM). Below we
will discuss the results for each of the four types of regulatory
network building blocks separately beginning with the first class
of building blocks involving only target-target relationships. We
conclude with drawing together all the results in order to identify
consistent regulatory network subcomponents.

Regulator Modules

For RMs, we used the correlation Ry,, of the weighted expression
profile of each target gene in a RM with the weighted average
expression profile of the other genes in the same module as a
consistency measure. Because each target gene participates in as
many distinct RMs as there are Rls involving the particular gene,
there is a separate Ry,, value for each interaction. It should be
emphasized, however, that the regulator module consistency
measure does not depend on the expression profile of the regu-
lator that defines the module. Figures 2A (E. coli) and 3A (yeast)
show the fractions of regulator modules consistent with gene
expression data at a given P-value and for which the correlation
Rpys 1s positive. Results for modules controlled by activating, re-
pressing, or dual activity regulators are shown separately. The
most interesting feature of the results is the different patterns
observed for E. coli and yeast for repressor-controlled RMs—in
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yeast these RMs have lower degree of consistency whereas in E.
coli, these RMs have higher degree of consistency than RMs con-
trolled by activators. Overall, the fraction of consistent RMs is
relatively high in both organisms (45% for E. coli and 53% for
yeast at P < 0.01).

Multiregulator Modules

For MRMs, the consistency measure used was the same as for
RMs, that is, the correlation between the weighted expression
profile of each gene in the module with the mean weighted ex-
pression profile of all the other genes in the module Ry, This
consistency measure indicates how coherent the expression of
each target gene is with the expression of other target genes regu-
lated by the same set of regulators. As every target gene in the
network participates in exactly one MRM, the R, value is com-
puted separately for each target gene. The fractions of consistent
target genes in MRMs at a given P-value and with positive corre-
lation Ry, are shown in Figures 2B (E. coli) and 3B (yeast) for all
target genes as well as MRMs with different numbers of regula-
tors. In both organisms, the MRMs with three regulators are the
most consistent. Overall, the MRMs appear to be somewhat less
consistent with gene expression data than RMs especially in yeast
(37% for E. coli and 21% for yeast at P <0.01). For RMs and
MRMs, cases with only one target gene in the module were not
included in the calculations presented in Figures 2 and 3.

Pairwise Regulatory Interactions

The simplest elements in the regulatory network that involve
both regulators and targets are pairwise regulator—target interac-
tions. Pearson correlation coefficients (R;) between weighted tar-
get and regulator expression profiles were used as a consistency
measure for Rls. Figures 2C (E. coli) and 3C (yeast) show the
fraction of consistent Rls classified by the mode of interaction. In
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addition to the P-value criterion based on randomization tests
(dotted lines), it was necessary to further require that for activa-
tor-target interactions, the correlation coefficient is positive and
that for repressor—target interactions, the correlation coefficient
is negative (solid lines). Including the sign criterion lowers the
fraction of consistent repressing interactions significantly as
many repressing interactions actually had a positive correlation
between the regulator and target gene expression profiles. This
somewhat surprising property of repressors results in overall a
low fraction of consistent interactions (16% for E. coli and 11%
for yeast for P < 0.01).

Target Modules

TMs allow accounting for combinatorial interactions between
transcription factors acting on a target gene in the consistency
calculations. The consistency metric we utilized for target mod-
ules is multiple coefficient of determination RZ,, based on fitting
a linear multiple regression model with the target gene expres-
sion profile as the dependent variable and its regulator expres-
sion profiles as independent variables. Figures 2D (E. coli) and 3D
(yeast) show the fractions of consistent TMs as a function of the
number of regulators in the TM. In yeast, the fraction of consis-
tent TMs increases strongly with increasing number of regulators
in the module. In E. coli, this tendency is less clear although the
fraction of consistent TMs peaks at three regulators. In general, a
larger fraction of TMs compared with Rls are consistent (17% in
E. coli and 25% in yeast at P < 0.01).

Feed-Forward Loops

Analysis of pairwise interactions could overestimate correlations
between transcription factor and target gene expression levels in
the presence of transcriptional feed-forward loops. In such cases,
two or more transcription factors act on the same gene, but some
of them (primary regulators) also regulate another (secondary)
regulator directly. Feed-forward loops can lead to an indirect ef-
fect by which the secondary regulator-target correlation is solely
because of the influence of the primary regulators. There are 206
(E. coli) and 240 (yeast) secondary regulator—target gene interac-
tions that participate in feed-forward loops so that ignoring feed-
forward loops could potentially bias the results for pairwise in-
teractions significantly. In the framework used here, the effect
described above can be accounted for by replacing standard cor-
relation coefficients with partial correlation coefficients (R.;) for
secondary regulator—target interactions. This approach allows for
the elimination of the effect solely because of primary regulator—
secondary regulator correlation from the calculations involving
secondary regulator-target gene correlations. While for indi-
vidual RIs, Ry values were in many cases quite different from Ry,
values, the overall effect of accounting for feed-forward loops on
the fractions of consistent RIs was quite small. The percentage of
consistent RIs dropped to 14% at P < 0.01 for E. coli with similar
changes for other P-value thresholds, and for yeast, this percent-
age was unchanged.

Consistent Subnetworks

All the results described above for both E. coli and yeast can be
displayed on maps of the regulatory network (Figs. 4, 5) in order
to help identifying subcomponents of the regulatory networks
that are consistent with the gene expression data compendiums
used in this study. The results for target-target relationships (RMs
and MRMs) are presented in Figures 4B (E. coli) and 5B (yeast),
whereas the results for regulator-target relationships (RIs and
TMs) are shown in Figures 4C (E. coli) and SC (yeast). These
figures show both the computed values of consistency metrics
(widths of links and sizes of nodes) and the elements deemed to

be consistent by the randomization test at P < 0.01 (darker color
links and nodes). The network maps are also included in the
Supplemental Material with the gene names indicated to allow
closer inspection of the network structures.

For both organisms, there are clearly identifiable consistent
subcomponents of the regulatory network involving multiple
transcriptional regulators. Examples of these include regulation
of amino-acid utilization and biosynthesis in yeast (A in Fig. 5A)
and flagellar biosynthesis in E. coli (F in Fig. 4A). These subnet-
works are also consistent when both target-regulator (Figs. 4C,
5C) and target-target (Figs. 4B, 5B) relationships are considered
unlike most of the subcomponents identified that only have con-
sistent target—target relationships. On the other hand, there are
major subcomponents of the network where there are few con-
sistent elements such as most components of the carbon utiliza-
tion machinery in both organisms (C in Figs. 4A, 5A).

The high variability in consistency depending on the func-
tional class of the genes involved in the particular network ele-
ment evident in Figures 4 and 5 is also clearly observable when
MRMs and TMs are classified by the functional class of the target
gene (Tables 1, 2). For E. coli, the targets involved in flagellar
biosynthesis (classes “motility”, “flagellum”, and “cellular com-
ponent biosynthesis”) and nucleotide biosynthesis are the most
consistent considering both target—target relationships (MRMs)
and regulator-target relationships (TMs). The flagellar biosynthe-
sis genes also typically have three regulators explaining partially
the observed peak in the fraction of consistent TMs and MRMs in
Figure 2. However, the number of regulators does not seem to be
the only determinant of consistency as the targets involved in
nucleotide biosynthesis usually have only one regulator. For
yeast, the target genes involved in pheromone response are the
most consistent when target-target relationships are considered.
However, the amino acid, nitrogen, and sulfur-metabolism re-
lated targets have most consistent regulator-target relationships.
Interestingly, targets in these functional classes do not have par-
ticularly high correlation between their expression levels and the
expression levels of other genes in the same MRM.

DISCUSSION

We have analyzed the consistency between known regulatory
network structures and gene expression data in E. coli and yeast
using previously reconstructed regulatory networks taken from
published literature and extensive compendia of gene expression
data. The subdivision of the networks into different classes of
network elements allowed us to establish local consistency mea-
sures between each element structure and gene expression data.
We investigated consistency both at the level of relationships
between target genes (RMs and MRMs) and at the level of regu-
lator-target relationships (RIs and TMs). Taken together, the re-
sults described above can be used to evaluate both the value of
literature-derived reconstructed networks and gene expression
data in fully reconstructing transcriptional regulatory networks
in microbial organisms. Below, we will discuss specific determi-
nants of consistency between regulatory network structures and
gene expression data.

Difference Between Repressors and Activators

For both pairwise RIs (E. coli and yeast) and RMs (yeast only), we
found that elements involving repressors tend to be less consis-
tent with gene expression data than elements involving activa-
tors. This effect is most likely because for a repressor-target gene
pair, either the repressor expression level is low or the target
expression level is low, but it is not likely that both have high
levels of expression at the same time. Because of the limited-
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Figure 4 Maps of the Escherichia coli regulatory network indicating the magnitudes of the consistency metrics and consistent network elements at a
P-value threshold of 0.01. (A) Network maps with each gene labeled by its name. Triangles correspond to regulators and boxes to targets. Particular
subcomponents of the network are identified by labeled boxes (C, carbon utilization; D, DNA metabolism; F, flagellar biosynthesis; |, iron utilization; N,
DNA damage; O, osmotic stress; P, phosphate utilization; R, purine utilization; S, stress response; T, Trp/Tyr utilization; U, sulfur utilization). (B)
Consistent target-target relationships in the regulatory network. The widths of the links are proportional to Rg,,? indicating how coherent the target gene
expression is with the expression of other genes in the regulator module defined by the regulator involved in the interaction. For target genes (and
regulators that are also targets of other regulators) the sizes of the nodes are proportional to Ry, indicating how coherent the target gene expression
is with the expression of other genes in the same multiregulator module. The colors of the links indicate the mode of regulation (green, activation; red,
repression; blue, dual). The darker shades of colors indicate that this component of the regulator module (for links) or multiregulator module (for nodes)
is consistent with gene expression data (at P < 0.01). (C) Consistent regulator-target relationships in the regulatory network. The widths of the links are
proportional to R’ indicating the correlation between regulator and target expression levels. The sizes of the nodes are proportional to R;,,”> and
describe how well the target expression level is explained by the regulator expression levels. The color scheme is the same as in B. The sign criterion was

used to evaluate the consistency of regulatory interactions as described in the text.
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Figure 5 Maps of the yeast regulatory network indicating the magnitudes of the consistency metrics and consistent network elements at a P-value
threshold of 0.01. See caption for Figure 4 for details. (A) Network maps with each gene labeled by its name. The subcomponents identified for the yeast
network are (A, amino acid utilization; C, carbon utilization; D, drug response; E, cell cycle control; |, nitrogen utilization; N, nucleotide utilization; O,
oxygen response; P, phosphate utilization; S, stress response). (B) Consistent target-target relationships. (C) Consistent regulator-target relationships.

dynamic range of high-throughput gene expression profiling ex-
periments, this would result in low absolute correlation between
repressor and target gene expression levels. However, in E. coli,
the RMs with repressing interactions are more consistent than
other types of regulatory modules (especially those involving
transcription factors with dual/unknown activity). As repressors
are more commonly utilized in prokaryotes than in eukaryotes

(Struhl 1999), the higher degree of consistency for repressor-
controlled regulator modules in E. coli may result from the pref-
erence for repression-based transcriptional regulation. In general,
the development of more sensitive high- or moderate-
throughput gene expression assays (Ronen et al. 2002) will po-
tentially allow solving the problems involved in reconstructing
repressor-regulated network elements.
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Table 1.
of the Target

Fractions of Consistent Transcription Factor Target Genes in the E. Coli Regulatory Network Classified by the Functional Class

MRM ™ Number of regulators
Functional class n P<001 P<0005 P<0001 n P<0.01 P<0.005 P<0.001 1 2 3 4 >4
Motility 44 0.95 0.95 0.89 46 0.78 0.48 0.09 12 6 28 0 0
Flagellum 38 0.95 0.95 0.87 40 0.68 0.45 0.1 6 2 32 0 0
Nucleotide biosynthesis 18 0.83 0.83 0.72 18 0.5 0.11 0 16 0 2 0 O
Metabolism of other compounds 46 0.8 0.67 0.37 47 0.23 0.21 0 39 6 1 1 0
Cellular component biosynthesis 64 0.58 0.56 0.52 68 0.37 0.22 0.06 23 13 30 2 O
Chaperoning 28 0.57 0.57 0.39 30 0.3 0.13 0.03 7 7 3 3 0
Posttranscriptional regulation 17 0.53 0.53 0.35 19 0.37 0.21 0 12 5 1 0 1
Primary active transporters 94 0.51 0.41 0.28 95 0.14 0.07 0 62 16 0 4 13
Group translocators 16 0.38 0.38 0.38 17 0.35 0.18 0 5 5 7 0 0
Macromolecule degradation 14 0.36 0.36 0.29 15 0.07 0 0 10 4 1 0 0
Membrane components 172 0.34 0.32 0.23 186 0.14 0.08 0.01 86 52 18 14 16
Central intermediary metabolism 91 0.34 0.26 0.14 99 0.07 0.03 0 42 26 10 14 7
Energy metabolism 93 0.33 0.3 0.22 102 0.06 0.03 0 27 22 7 23 23
Carbon compound utilization 115 0.33 0.29 0.22 126 0.18 0.1 0 47 52 20 6 1
Amino acid biosynthesis 66 0.33 0.27 0.17 74 0.09 0.03 0 56 8 5 4 1
Energy production/transport 55 0.31 0.27 0.15 56 0.04 0.02 0 0 18 4 11 13
Adaptation to stress 37 0.27 0.22 0.14 46 0.11 0.09 0 31 7 6 2 0
Transcriptional regulation 42 0.26 0.24 0.12 63 0.1 0.08 0 36 15 5 6 1
Amino acid utilization 22 0.23 0.23 0.14 27 0.11 0.07 0 14 4 0 3 6
Transcription 40 0.23 0.2 0.1 60 0.08 0.07 0 36 13 4 6 1
Cofactor biosynthesis 28 0.18 0.18 0.07 30 0.03 0.03 0 24 4 2 0 O
EC potential driven transporters 36 0.17 0.11 0.08 42 0.12 0.07 0.02 17 15 4 4 2
Cell protection 25 0.08 0.08 0 31 0.19 0.03 0 24 5 1 0 1

The functional classes were obtained from the GenProtEC database (Serres and Riley 2000). Only functional classes with at least 15 genes in the
network are included. Results considering both multiregulator modules (MRM) and target modules (TM) are shown. n, number of targets in this class
(for MRMs this is the number of targets in this class participating in MRMs with more than one target). Fractions of consistent targets in a particular
class at particular P-value cutoffs are shown. The number of regulator columns show the number of target genes in a functional class with the

indicated number of regulators.

Correlation Between Transcription Factor and Target
Gene Expression

The consistency measures used in this work for pairwise interac-
tions, feed-forward loops, and TMs assume that some level of
correlation would exist between the transcription factor and its
target gene expression at least under some specific conditions—
an assumption that is not necessarily, in general, true. A major
reason for this lack of correlation would be that most transcrip-
tion factors themselves are not significantly transcriptionally
regulated and their expression remains at a low constitutive level.
Instead, many transcription factors such as Migl glucose repres-
sor in yeast are regulated by phosphorylation and localization as
well as other posttranscriptional regulatory mechanisms (Carl-
son 1999). However, there is evidence from previous studies
(Birnbaum et al. 2001; Zhu et al. 2002) that in many cases the
correlation assumption is at least partially true, that is while the
major mode of regulation of transcription factor activity is prob-
ably posttranscriptional, there is also a transcriptional compo-
nent that can be utilized in analyzing the relationship between
regulator and target expression. Based on these considerations,
the relatively low fraction of consistent interactions can be
thought to be more indicative of the fraction of transcription
factors that are significantly transcriptionally regulated and are
subject to only minor posttranscriptional regulation. In any case,
the low fraction of consistent pairwise interactions exposes the
inherent limitations in regulatory network reconstruction strat-
egies that fundamentally rely on the correlation between tran-
scription factor and target gene expression. These considerations
do not imply that this correlation should not be utilized where it
exists, as it can provide valuable additional information for regu-
latory network reconstruction.
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How Complete Are Known Regulatory Networks?

In both organisms, we observed that in addition to depending on
the mode of regulation and the functional class of the genes
involved in the network element, the consistency of a particular
element can also significantly depend on the structural features
of the element. The most significant of these features affecting
the consistency of TMs and MRMs is the number of regulators a
particular target gene has. In particular, modules with only one
regulator appear to be less consistent than those with more regu-
lators. This lesser degree of consistency indicates that the single
regulator modules might in fact be regulated by more than one
transcription factor, but the regulatory mechanisms have not
been completely characterized. In particular, yeast, like other eu-
karyotes, typically utilizes general transcription factors and chro-
matin-modifying enzymes in addition to specific transcription
factors (Featherstone 2002). Because the targets of these general
factors are not as well characterized as those of specific factors,
the network utilized in this work is expected to contain only a
small fraction of the Rls in the complete regulatory network.

Orrigin of Consistent Subnetworks

Some of the variability in the consistency between regulatory
network structures and gene expression data appears to be a re-
sult of the types of data gene expression sets utilized in this work.
For example, the response to amino-acid depletion was specifi-
cally studied in one of the yeast data sets (Gasch et al. 2000)
potentially giving rise to the high degree of consistency in the
amino-acid utilization subnetwork. A key determinant of the de-
gree of consistency in a subcomponent is also the nature of the
transcriptional regulators in the component. For example, in E.
coli, the flagellar biosynthesis process is controlled by a transcrip-
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Table 2.
of the Target

Fractions of Consistent Transcription Factor Target Genes in the Yeast Regulatory Network Classified by the Functional Class

MRM ™ Number of regulators

Functional class n P<0.01 P<0.005 P<0001 n P<001 P<0.005 P<0.001 1 2 3 4 >4
Pheromone response 10 0.4 0.4 0.3 30 0.37 0.27 0.13 6 8 5 3 8
Detoxification 16 0.38 0.38 0.31 27 0.33 0.22 0.07 1 10 4 0 2
Nucleotide metabolism 21 0.33 0.24 0.19 25 0.28 0.2 0.2 3 16 3 3 0
DNA synthesis and replication 11 0.27 0.27 0.18 18 0.17 0.06 0 8 6 2 1 1
Amino acid metabolism 35 0.26 0.2 0.11 61 0.39 0.33 0.18 23 14 16 5 3
Carbohydrate metabolism 50 0.26 0.18 0.12 83 0.2 0.13 0.06 26 22 20 3 12
Mitotic cell cycle and cell

cycle control 27 0.22 0.22 0.19 43 0.14 0.14 0.02 18 14 5 1 5
Nitrogen and sulfur metabolism 14 0.14 0.14 0.07 28 0.39 0.39 0.32 5 9 6 6 2
Cellular import 18 0.11 0.11 0.06 21 0.29 0.29 0.14 5 9 5 2 0
Stress response 18 0.11 0.11 0.11 29 0.1 0.07 0.07 12 8 5 1 3
Meiosis 20 0.1 0.1 0.1 26 0.04 0.04 0 12 7 2 1 4
mRNA synthesis 34 0.06 0.06 0.03 64 0.16 0.11 0.06 30 18 6 1 9
Lipid, fatty-acid and

isoprenoid metabolism 30 0.03 0.03 0.03 39 0.13 0.13 0.05 20 8 5 4 2
DNA recombination and

DNA repair 11 0 0 0 19 0.05 0.05 0 10 4 3 1
Sporulation and germination 8 0 0 0 17 0.12 0.06 0 5 6 2 2 2

See caption for Table 1 for details. The functional classes were obtained from the MIPS database (Mewes et al. 2002).

tional regulatory cascade involving regulators fliDC and fliA (Ka-
lir et al. 2001) in which both regulator-target and target-target
correlations in gene expression are expected. However, there are
also general network structural features that appear to influence
consistency. The most prominent feature is the tendency of rela-
tively isolated subcomponents of the network such as flagellar
biosynthesis and phosphate utilization in E. coli or amino-acid
utilization in yeast to be consistent with gene expression data,
whereas highly interconnected components such as carbon uti-
lization regulation typically have a lower degree of consistency.
However, not every isolated subnetwork has a large number of
consistent network elements indicating that the network recon-
struction may be incomplete, and these subnetworks may in fact
be more strongly connected to other parts of the network than is
currently known. Alternatively, the data compendiums used may
not contain experiments where regulators in these subnetworks
are activated strongly enough to cause changes in target gene
expression detectable using current gene expression profiling
technologies.

Expanding Known Regulatory Networks

Based on the results of the current study focusing on evaluating
and validating the consistency between known network struc-
tures and high-throughput data sets, the next step is to utilize the
information gained to expand known regulatory networks. In
principle, the problem of expanding known regulatory networks
by utilizing gene expression and location analysis data could be
cast as a supervised data mining problem, where known RIs
would be used to train a prediction algorithm that would predict
RIs from the available data. However, the limited sizes of the
training sets available for each TM/RM (only a few interactions or
genes) would make training extremely challenging. The most
appropriate approach would then seem to be a semisupervised
approach, where the known RIs would be used to seed an itera-
tive process to add new members to TMs/RMs in an otherwise
unsupervised manner. The method described in Ihmels et al.
(2002) implements this type of approach but does not specifically
initialize the process with known network structures. Further-
more, this method would potentially benefit from utilizing regu-

lator-target relationships in cases where these relationships
would provide additional useful constraints for network recon-
struction. The type of approach described above could also
readily include other types of information such as location analy-
sis (Lee et al. 2002) and promoter sequence data (Wang et al.
2002) to form a principled basis for network expansion.

Conclusion
Taken together, the results shown here indicate that combining
information on known regulatory network structures with gene
expression data is a productive way to refine and expand regula-
tory networks structures. The results show that different features
of the network structure influence consistency. In particular, we
observe that network elements involving repressors are typically
less consistent than those involving activators indicating that
reconstruction of these types of network components would pose
a challenge. We also find that gene expression data provide much
better support overall for target-target relationships (RMs and
MRMs) than for regulator-target relationships (RIs and TMs).
This result shows that a clustering-like approach to analyzing
gene expression data by grouping target genes with similar ex-
pression patterns should indeed be successful in at least partially
reconstructing individual RMs and MRMs. The observed increase
in the fraction of consistent elements as a function of the num-
ber of regulators involved in the element can be interpreted as
potential incompleteness of the established regulatory networks
in cases where target genes are controlled by only one known
regulator. The discovery of highly consistent network subcom-
ponents indicates that a gene expression data-based reconstruc-
tion of regulatory networks can be a powerful strategy for par-
ticular subcomponents that are sufficiently isolated and for
which sufficient quantities of relevant data are available. The
increasing availability of other high-throughput data types such
as genome-wide location-analysis data (Lee et al. 2002) will fur-
ther improve the prospects of such reconstruction, as additional
data types can be used to resolve inconsistencies (Wyrick and
Young 2002).

The full utilization of all high-throughput data types, how-
ever, will require the combination of prior biological knowledge
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extracted from databases and literature with the statistical analy-
sis of the large-scale data sets. Thus, full reconstruction of regu-
latory networks will rely on a combination of “bottom-up”
(based on descriptions of individual interactions and regulons in
the literature) and “top-down” (based on large systemic data sets)
approaches with targeted prospective experimentation to succes-
sively resolve inconsistencies between the two. Ultimately, all
such data types are expected to be reconciled in the context of
genome-scale, in silico models of regulatory networks that can be
used to analyze, interpret, and ultimately predict their function
(Covert and Palsson 2002; Palsson 2002).

METHODS

Regulatory Networks

We utilized the recently published reconstructions of regulatory
network structures for E. coli (Shen-Orr et al. 2002) and yeast
(Guelzim et al. 2002). These reconstructions are primarily based
on literature-derived information stored in databases, Regu-
lonDB for E. coli (Salgado et al. 2001) and YPD for yeast (Costanzo
et al. 2001), with some additional manual curation based on
recent research literature. The procedures used for these recon-
structions are similar to well-established reconstruction proce-
dures for metabolic networks (Covert et al. 2001). All autoregu-
latory interactions were removed from the networks, as these
cannot be studied using steady-state gene expression data. Each
operon in the E. coli network was split into individual genes that
comprise the operon, and the regulators of the operon were as-
signed as regulators of each individual gene. In both networks, all
genes that did not have gene expression data in the final com-
pendium data sets were removed resulting in somewhat smaller
networks than those reported in Guelzim et al. (2002) and Shen-
Orr et al. (2002).

Gene Expression Data

For yeast, the gene expression data were downloaded directly
from the source described in each individual publication (see
Supplementary Material for the references). For E. coli, the data
were loaded from either the source described in the publication
(see Supplementary Material), Stanford Microarray Database
(Sherlock et al. 2001), or the ASAP database at the University of
Wisconsin (Glasner et al. 2003). The data produced using cDNA
microarrays were converted into log, ratios if they were not in
that form already. For data sets produced using oligonucleotide
arrays, the data were first converted into log, expression ratios
between each experimental condition and a chosen reference
condition. The individual preprocessed data sets were combined
into a compendium data set for both yeast (904 experiments) and
E. coli (141 experiments). Genes with over two thirds of missing
values in the compendiums were removed from the final data set.
The final compendiums were standardized by both experiment
and gene and organized into a data matrix X of size N genes times
M experiments.

Consistency Measures

For every instance of each of the four basic types of regulatory
network elements studied in this work, we derived a weight for
every experiment in the gene expression data compendium. For
regulator module k, the weight (normalized over experiments)
for experiment j was calculated as

_ |Xr7' . }til

TR
s=1 Wks

where x,; is the expression level of the regulator gene of the mod-
ule in experiment j and X, is the mean expression level of
all target genes in the module. For MRMs, the weight was calcu-

€Y

2432 Genome Research
www.genome.org

lated as in equation 1, but x,; was replaced by the mean ex-
pression level of all regulators of the module %,. For RIs, the
weight was calculated as in equation 1, but ¥, was replaced by the
expression level of the single target gene x,;.. The same weight was
used for feed-forward loops. Finally, for target modules, x,; was
replaced by the mean expression level of all the regulators of the
target ¥,;,and X,; was replaced by the expression level of the single
target gene x,,. Below we will assume that the expression profiles
have already been weighted with the appropriate weight vector
for each element so that the expression level of gene i in experi-
ment j is redefined as x; — Wy ;,x;;, where k(i) is the index to the
element that gene i belongs to when the particular consistency
measure is calculated (e.g., for RMs, k(i) is the index to the mod-
ule in which gene i is a target gene).

The consistency measures for RMs, MRMs, and RIs are all
based on the standard Pearson product-moment correlation co-
efficient between two variables X and Y with M observations:

UM DM xy, - Xp
R(X,Y) = —S’ng’ L= @

where X and s, denote the mean and standard deviation of x
respectively. The consistency measure we utilized for RMs is the
Pearson correlation coefficient Ry, = R(x,, X;.,) between the ex-
pression profile each target gene in the module (x) with the
mean of the expression profiles of the other targets in the module
(X1\»)- The same measure was also used for MRMs except that the
set of target genes in the same module with a particular target
gene was different. For MRMs with only one regulator, both regu-
lator and MRM measures are exactly the same. The consistency
measure for RIs was simply the correlation coefficient between
regulator and target expression profiles Ry, = R(x,,x,).

For evaluating the consistency of the TMs, we utilized mul-
tiple coefficients of determination (Johnson and Wichern 2002)
obtained by computing a multiple regression fit with the target
expression level as a dependent variable and the regulator ex-
pression levels as independent variables:

X =Bo+ EiER Bix; + €. 3)

Here, x,; denotes the expression level of the target gene in experi-
ment j, R is the set of regulator gene indices for this target mod-
ule, B, is the regression coefficient for the ith regulator, and g; is
a residual error term. The multiple coefficient of determination
for a target module is then defined as

M 5 =12
iz (R — Xp)
R"2[M=2/1 7 - (4)

M =2/
2 (g - %)

where ¥, is the average expression level of the target across all M
experiments, and X, is the estimate for the expression level of the
target gene in the jth experiment obtained using the regression
model (equation 3). The multiple coefficient of determination for
target modules with only one regulator is the same as the squared
Pearson correlation coefficient Ry for the corresponding RI.

Partial correlation coefficients Ry for feed-forward loops
were computed by first calculating multiple regressions with
both target gene expression and secondary regulator expression
separately as the dependent variable and the set of primary regu-
lator expression levels as the independent variables, and then
calculating the Pearson correlation for the residuals from these
regressions (Johnson and Wichern 2002). Except for Rp,/ all the
measures described above range from —1 to +1 with +1 indicat-
ing perfect correlation, —1 perfect anticorrelation, and 0 lack of
correlation (Rp,/ ranges between 0 and +1).

The major drawback with the consistency measures de-
scribed above is that they underestimate the consistency if the
dependencies between log-expression levels are nonlinear. How-
ever, we also investigated nonlinear measures of association such
as mutual information computed based on discretized gene ex-
pression data and observed that the overall conclusions of this
study were not dependent on the particular measure chosen.
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Randomized Network Elements

To evaluate the significance of a particular value for each of the
consistency measures described above in a network structure-
dependent manner, we devise a separate nonparametric random-
ization strategy for each basic type of network element. In all the
randomization tests described below, the weight vector used to
evaluate the consistency measure for a particular network ele-
ment was also used to evaluate the corresponding measure for
the randomly generated network elements. The randomization
process is illustrated in Figure 1B.

For pairwise correlation coefficients (RIs) and partial corre-
lation coefficients (feed-forward loops), we created a null distri-
bution by generating 1000 random gene pairs from the lists of all
genes included in the compendium gene expression data set and
evaluated Rg;* for each pair. A P-value for the kth interaction in
the real regulatory network is then determined by computing the
probability of observing a specific value Ry, given the distribu-
tion of the randomized values (Rg;*)* (Fig. 1B). Similarly for mul-
tiple coefficients of determination (TMs) we simulate a null dis-
tribution for TMs with different numbers of regulators by ran-
domly choosing 1000 random target gene-regulator set pairs
form the list of all genes so that the regulator set is of the same
size as the true regulator set for a particular module. We then
computed a multiple coefficient of determination R,/* for this
random TM. The probability of observing a sgecific value of
Ry’ is evaluated given the distribution of Ry,,** values for the
same regulator set size. For RMs and MRMs, we generate a null
distribution by choosing 1000 random sets of target genes of the
same size as the individual modules and evaluating the probabil-
ity of observing the particular value of Rgy, (OF Ryprpgy) for the
kth module given the null distribution for modules of this size.
All the calculations and data processing were done using Matlab
6.1 (Mathworks) and Perl v.5.6.1.
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