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Genome-scale models of Escherichia coli K-12 MG1655 metabolism
have been able to predict growth phenotypes in most, but not all,
defined growth environments. Here we introduce the use of an
optimization-based algorithm that predicts the missing reactions
that are required to reconcile computation and experiment when
they disagree. The computer-generated hypotheses for missing
reactions were verified experimentally in five cases, leading to the
functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT,
and putP) with two new enzymatic activities and four transport
functions. This study thus demonstrates the use of systems analysis
to discover metabolic and transport functions and their genetic
basis by a combination of experimental and computational ap-
proaches.

constraint-based � flux balance analysis � functional genomics �
metabolic reconstruction � systems biology

Current genome annotations include a substantial fraction of
ORFs with unknown function (1, 2); methods are needed to

provide insight into the possible function of these genes, without
the need for screening individual gene products across a mul-
titude of possible activities. Metabolic and regulatory networks
are reconstructed from genome annotations and scientific liter-
ature to integrate and represent our current knowledge of
network components and interactions (3). Dual-perturbation
methods have been developed to study regulatory networks (4),
which can be used to reconcile model predictions and experi-
mental data, thus leading to possible iterative model refinements
and experimentally testable hypotheses (4, 5). Iterative model-
building can be systematized through the use of computational
algorithms (6). Such an approach is presented here, and it
consists of four steps. First, computational analysis identified
discrepancies between model predictions and growth phenotyp-
ing data by using a reconstructed genome-scale Escherichia coli
metabolic network. Second, an algorithm then identified enzy-
matic and transport reactions that likely were missing from the
current metabolic reconstruction that could reconcile model
predictions and experimental observations. Third, ORFs that
might be responsible for these missing activities then were
identified by using literature searches, sequence-homology
searches (7), context-based homology methods (8, 9), and in
some cases unpublished microarray data. Fourth, experimental
verification of the algorithm’s predictions then were carried out
by evaluating growth phenotypes of single-deletion strains avail-
able in the Keio collection (10) and gene-expression measure-
ments. Here we present a comprehensive combined computa-
tional and experimental approach to analyze phenotypic data
and genome annotation information in a global manner to
uncover individual ORF function.

Results
Growth phenotyping data (11), available from Biolog (Hayward
CA; www.biolog.com), were used to identify missing reactions
from the reconstructed genome-scale metabolic network of E.
coli MG1655 (iJR904) (12). Using a flux balance model of E. coli,
we identified 54 minimal medium conditions with different
carbon or nitrogen sources that support growth experimentally

in the Biolog data but for which the reconstructed metabolic
network could not explain a growth state. Four of these dis-
crepancies (D-allose, glucose 1-phosphate, fructose 1-phosphate,
and L-cysteine) could be reconciled with available literature for
E. coli metabolism. For the remaining discrepancies, we then
used an algorithm (step two in the procedure described above;
for details see Materials and Methods) to identify the minimal
number of reactions [from a universal database of known
metabolic transformations (13, 14)] that needed to be added to
the reconstructed network so that cellular growth could be
computed by the model (Fig. 1). Additional solutions also were
found, which could have as many or more missing reactions as
prior solutions, by repeating the algorithm and excluding pre-
vious solutions.

The algorithm identified metabolic and�or transport activities
whose addition would allow the reconstructed network to repro-
duce growth in 26 of the 50 identified environments (see Table 2,
which is published as supporting information on the PNAS web site,
for details). The algorithm found 10 or more solutions for 14 of
these 26 cases and a single unique solution for 11 of these 26 cases
(for D-malate, there were two possible solutions; see text below).
Eight of the 26 cases only require a transporter for the metabolite
of interest, indicating that the enzymatic transformations needed
are already present in the reconstruction.

A subset of the 26 minimal medium conditions was chosen for
further experimentation to verify the existence of the predicted
missing transformations and to identify the genes responsible for
them. Fourteen minimal medium conditions were initially
screened, but we were unable to confirm growth in five of the
minimal medium conditions (xanthine and xanthosine as nitro-
gen sources and lyxose, �-ketobutyrate, and �-hydroxybutyrate
as carbon sources). E. coli grew slowly on agmatine and citrulline
as nitrogen sources and showed a 3-day lag period when grown
on glyoxylate as a carbon source (data not shown). We describe
the remaining six cases in more detail, and the results are
summarized in Table 1.

Transport Activities. In silico growth of E. coli on propionate and
5-keto-D-gluconate requires the addition of a transporter for these
metabolites to the reconstructed metabolic network because there
are currently no existing annotated transporters for these com-
pounds in E. coli. Eight genes with predicted or known transport
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activities were investigated by evaluating growth phenotypes of
single-gene deletion strains (see Table 3, which is published as
supporting information on the PNAS web site, for list of mutants

screened). Of eight single-gene deletion mutants screened, only the
following showed reduced growth rates: �putP on propionate and
�idnT on 5-keto-D-gluconate (see Fig. 3, which is published as

Fig. 1. Systematic procedure for identifying missing reactions and ORF assignments. With a metabolic network reconstruction, growth predictions can be made
and compared with experimental growth phenotypes (green box). For medium conditions where the microorganism grows and the model does not predict
growth (red wells), reactions from a universal database can be identified by an optimization algorithm (red box) that, if added to the current reconstruction,
allow for growth predictions by the model (see Materials and Methods and Supporting Text for algorithm details). Experimental testing of mutant strains can
be used to identify genes responsible for the added enzymatic activities, and subsequent studies of gene-expression and biochemical characterizations can be
used to further support conclusions (blue boxes). Data shown in the blue boxes is for the genes identified as being involved in L-galactonate catabolism: yjjL
(putative transporter), yjjM (putative regulator), and yjjN (putative oxidoreductase). Reported gene-expression levels are relative to the internal control
gene, acpP.

Table 1. Summary of experimental results for growth on various carbon sources

Carbon source Missing functions Genes Mutant phenotypes

RT-PCR*

Control Carbon source

L-galactonate Transporter yjjL Lethal 8.9 � 10�5 0.82
Oxidoreductase yjjN Lag,† � 1.1 � 10�5 4.4 � 10�2

Regulator yjjM Lethal 9.4 � 10�3 0.14
D-malate Transporter dctA Lag, � 0.12 0.62

Dehydrogenase yeaU Lethal 1.9 � 10�3 1.1
Regulator yeaT Lag,† � 6.5 � 10�3 1.5

Propionate Transporter putP � 0.13 0.32
5-keto-D-gluconate Transporter idnT � 3.0 � 10�2 7.51
Thymidine Transporter tolC Yx�s, � 3.6 � 10�2 5.0 � 10�2

Lag, no growth was observed for a period of 2 days; lethal, no growth was observed for a period of 3 days; Yx�s,
overall biomass yields per substrate were substantially reduced; �, growth rates were substantially reduced (see
text for reported values).
*RT-PCR levels are the mean relative expression levels to the internal control gene acpP for the control condition
(see Materials and Methods for details) and the respective carbon source condition. See Table 4 for the means
and standard deviations.

†For �yjjN with L-galactonate and �yeaT with D-malate as a carbon source, no growth was observed in the
Bioscreen C analysis, but growth was observed after 2 days in Erlenmeyer flasks, which is likely attributable to
aeration differences within the different culture conditions.
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supporting information on the PNAS web site). Additionally, both
putP and idnT show increased expression levels when grown on
propionate and 5-keto-D-gluconate minimal medium, respectively
(Table 1). Although IdnT is a known D-gluconate and L-idonate
transporter, a prior study has shown that 5-keto-D-gluconate inhib-
its D-gluconate transport (15). PutP is a proline transporter that
belongs to the same family of transporters as a propionate trans-
porter (MctP) from Rhizobium leguminosarum (16), and the dele-
tion of putP reduces the growth rate (�) on propionate (� � 0.02 �
0.002 h�1 for �putP as compared with 0.06 � 0.002 h�1 for the
parental strain). This combined evidence suggests that putP and
idnT are responsible for the transport of propionate and 5-keto-D-
gluconate, respectively.

Growth on Thymidine. The Biolog experimental data indicates that
E. coli also can grow on thymidine as a sole carbon source but not
as a nitrogen source. The iJR904 metabolic network includes a
reaction cleaving thymidine into deoxy-ribose-1-phosphate and
thymine. Although the sugar can be converted into central meta-
bolic intermediates, the network has no way of dissipating thymine,
resulting in a no growth prediction. Accordingly, the simplest
solution identified by the algorithm calls for the secretion of
thymine (some of the other solutions use the thymine reductive
pathway coupled with secretion of pathway intermediates). HPLC
analysis of the batch culture medium was in agreement with this
hypothesis, because thymidine consumption was accompanied by
corresponding thymine secretion into the growth medium (see Fig.
4, which is published as supporting information on the PNAS web
site). A recent study has shown that E. coli strains with ntrB(Con)
mutations can use thymine as a nitrogen source at room temper-
ature (but not at 37°C and not in the parental strain) (17). The
HPLC results are in agreement with this study because we only
observed secretion of thymine in cells grown at 37°C, which lack the
ntrB(Con) mutation. Only 1 mutant (�tolC), of the 29 screened

mutants, exhibited a substantially reduced growth rate and biomass
yield, but the mutant still secreted thymine [an independent screen
of the �tolC mutant found it had defective growth on 19 of 38
evaluated carbon sources (18)]. It remains unclear which trans-
porter is responsible for transport of thymine across the inner
membrane and if tolC plays a role, but our data indicate that a
secretion mechanism must exist for thymine.

D-Malate Catabolism. Transport and enzymatic reaction(s) are
needed to reconcile D-malate catabolism; the computational
algorithm developed here identified the decarboxylation of
D-malate into pyruvate as the simplest explanation (Fig. 2A).
Three mutants (�dctA, �yeaT, and �yeaU) showed altered
growth on D-malate. The �dctA mutant was only able to grow
after a 2-day lag period (� � 0.23 � 0.006 h�1 for �dctA as
compared with 0.35 � 0.006 h�1 for the parental strain), whereas
the �yeaU and �yeaT mutants showed no growth over 3 days
(Fig. 2B) in the Bioscreen C (a 200-well growth-monitoring
system). The �yeaT mutant was able to grow after 2 days in
Erlenmeyer flasks but at a much slower growth rate (� � 0.01 �
0.001 h�1, based on two replicates). The eventual growth of the
�dctA mutant indicates that another transporter eventually
compensates for the dctA deletion (Fig. 2); in fact, dcuA and
dcuB show increased expression levels in the �dctA strain grown
on D-malate (see Table 4, which is published as supporting
information on the PNAS web site). In addition to mutant
phenotyping data, both dctA and yeaU show increased expression
levels during growth on D-malate as compared with L-lactate
(Fig. 2C), providing further evidence for their involvement in
D-malate catabolism. DctA is one of four dicarboxylic acid
transporters that are known to transport L-malate. Based on the
combined evidence provided by mutant growth phenotypes and
gene-expression data, dctA appears to be responsible for the
transport of D-malate as well. YeaU has significant homology

A B

C D

Extracellular
D-malate

yeaU, sfcA,
or maeB

dctA yeaU maeB sfcA
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µ

Fig. 2. Utilization of D-malate as a sole carbon source. (A) The two pathways that are predicted by the algorithm and the corresponding genes whose mutants
were screened for altered phenotypes (red genes indicate that corresponding mutant strains showed altered growth). (B) Growth phenotype screens for the
parental strain (BW25113), three mutants with altered phenotypes (�yeaU, �dctA, and �yeaT), and other screened mutants for growth on D-malate. (C)
Expression levels were determined for BW25113 grown on L-lactate and D-malate by using RT-PCR. The values reported are the expression levels relative to the
internal control gene acpP and the fold expression changes (D-malate to L-lactate) across the two conditions. (D) Results from kinetic assays of overexpressed YeaU
protein show enzymatic activity levels as a function of increasing concentrations of D-malate.
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with tartrate dehydrogenase from Pseudomonas putida, which
has been shown to oxidize D-malate into pyruvate (19). Bio-
chemical assays of the partially purified E. coli YeaU protein
showed that the enzyme does oxidize D-malate by using NAD as
an electron acceptor (Fig. 2D). YeaT is annotated as a putative
regulator and, based on its chromosomal location and lethal
phenotype, it appears to positively regulate yeaU. This conclu-
sion was further supported by RT-PCR measurements of DNA
isolated by chromatin immunoprecipitation (ChIP) from a
yeaT-8x myc-tagged strain grown on D-malate, which shows
enrichment for the upstream region of yeaU (see Table 5, which
is published as supporting information on the PNAS web site).
Our experimental data thus shows that D-malate catabolism
involves the dctA, yeaT, and yeaU gene products.

Galactonate �-Lactonate and Galactonate Catabolism. The Biolog
data indicates that both D- and L-galactonate �-lactone can
support growth as sole carbon sources; however, the hydration
of galactonate �-lactone into galactonate occurs nonenzymati-
cally (at pH 7; data not shown), making it difficult to assess
growth solely on galactonate �-lactone. D-Galactonate catabo-
lism has been well characterized in the literature (20) and already
is represented in the metabolic reconstruction. Currently, L-
galactonate is not present in the KEGG database (14), so the
algorithm in its current implementation cannot resolve the
observed phenotype; however, the catabolism of L-galactonate
has been reported in E. coli, and the pathway has been identified
(21). The genes responsible for the transport and oxidation of
L-galactonate have not been found and subsequently were
targeted in this study.

From Affymetrix gene-expression data of MG1655 grown on
L-galactonate (data not shown), we were able to identify two genes
(yjjL and yjjN) that were strongly up-regulated compared with
growth on other carbon sources. Knockout mutants of these two
genes and the putative regulator (yjjM) located between these loci
were unable to grow on L-galactonate in a Bioscreen C analysis. In
batch growth experiments conducted in flasks, the �yjjL and �yjjM
strains still were unable to grow; however, the �yjjN strain did grow
after a 2-day lag phase but at a slower growth rate than the parental
strain (� � 0.36 � 0.02 h�1 for BW25113 and 0.17 � 0.01 h�1 for
�yjjN). Subsequent analysis of expression levels for all three genes
by using RT-PCR showed that their expression is strongly up-
regulated on L-galactonate as compared with L-lactate (data shown
in Fig. 1 and Table 1). From these results, we conclude that the
putative transporter (yjjL) and putative oxidoreductase (yjjN) are
likely to be responsible for the missing transport and enzymatic
(L-galactonate oxidoreductase) activities and that yjjM regulates
their gene expression.

Discussion
The results from this study demonstrate that the synergy between
experimentation and in silico modeling allows for the discovery of
the roles individual genes play in an organism’s behavior. In this
study, a metabolic model was used to evaluate growth phenotypes
and when discrepancies were found the model was used to generate
testable hypotheses concerning the presence of metabolic and
transport functions. The algorithm presented here can be used to
identify missing metabolic and transport reactions based on growth
phenotyping data, which, as shown here, can subsequently lead to
the identification of gene functions. This algorithmic method can be
used to direct the search for enzymes and transporters within a
genome, and a variety of experimental methods can be used to find
and confirm the roles of the responsible genes (7–9, 22). Phenotypic
screens of single-deletion mutants have been carried out (18, 23),
and these will be important for narrowing down likely gene
candidates as well as pointing out alternate metabolic routes
[requiring the identification of synthetic lethal gene interactions
(24)]. Because predictions could be made for only 26 of the 50 cases

in this study, a limitation to the computational approach in its
current implementation is that the missing reactions must belong to
the universal database. As such, undiscovered metabolic reactions
will not be identified; however, the inclusion of computational
methods that calculate novel and thermodynamically feasible met-
abolic transformations (25) will expand the scope of this study.

We have shown that the presented approach (combining data
analysis, hypothesis generation, and experimental testing) can be
used to systematically discover missing gene functions in micro-
bial organisms. Although these efforts have centered on E. coli,
the approach is likely to be more useful for less characterized
organisms where new growth phenotypes are observed and many
more genes with unknown functions are present.

Materials and Methods
Computational Methods. For each minimal medium growth condi-
tion (supplemented with a carbon or nitrogen source) the algorithm
calculates the minimum number of reactions that need to be added
from U (matrix of known metabolic reactions) and X (a matrix of
exchange reactions) to allow for growth. The optimization objective
and constraints are detailed in Fig. 1 (and discussed in greater depth
in Supporting Text, which is published as supporting information on
the PNAS web site). The computational algorithm is a hybrid of
those developed for calculating the minimum number of reactions
required for cellular growth and for designing strains for metabolic
engineering purposes (13, 26). The matrices S, U, and X, respec-
tively, contain the stoichiometric coefficients for the reactions in the
current metabolic reconstruction (iJR904) (12), the universal da-
tabase (13) [derived from KEGG (14)], and the exchange reactions
allowing intracellular metabolites to be added to or depleted from
the system. The two binary vectors, a and b, will have only nonzero
entries if the corresponding reaction(s) need to be added to the
network to enable growth from U and X, respectively. The vectors
v, y, and z contain the fluxes through the iJR904, universal database,
and exchange reactions, respectively. The algorithm was used
iteratively, with each iteration excluding previous solutions, to
identify up to 15 possible solutions (13, 26). Mutants were identified
for phenotypic screens based on literature searches, BLAST se-
quence-homology searches, context-based homology searches [via
the Prolinks database (9)], available Biolog results for E. coli
mutants [ASAP database (23)], and unpublished gene-expression
microarray data (for L-galactonate).

Strains and Culture Conditions. The Keio collection of in-frame
single-gene deletion strains (10) was the source for nearly all of
the mutant strains used in this study. The individual strains from
the collection were obtained from Andrei Osterman at The
Burnham Institute (La Jolla, CA). The parental strain for all of
the mutants was BW25113 (27) and was obtained from the E. coli
Genetic Stock Collection (New Haven, CT). A �yjjM mutant was
generated and used in this study because the Keio collection
mutant lacks the predicted promoter for yjjN (28). To generate
the �yjjM mutant, the same method used to make the knockout
collection (27) was used but with the following primers:
5�-TTAATGAGCATAACGCGTGTTCTCATTAATGGA-
TCGAATCATTGATTGTTTAGCTGAATTATTCCGG-
GGATCCGTCGACC-3� and 5�-ATGTACAACATCAGC-
CGCACCACAGTGCGTCATATTCTCAGCCACTTACG-
CGAATGCGCGGTGTAGGCTGGAGCTGCTTC-3�. All mu-
tants for genes listed in Table 1 were confirmed with PCR. A
yeaT-8x myc-tagged strain used for ChIP experiments was gen-
erated from the BW25113 parental strain by using pBOP508 as
described previously (29).

All strains were screened for growth by using the Bioscreen C
platereader system (Growth Curves USA, Piscataway, NJ) by
monitoring optical density at 600 nm over 72 h. For strains that
showed altered phenotypes relative to the parental strain (such
as lethal phenotypes, prolonged lag periods, reduced biomass
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yields, or reduced growth rates), additional batch experiments
were conducted in triplicate in 250-ml Erlenmeyer flasks be-
cause aeration rates can be limiting in the Bioscreen C. For most
nonlethal strains with reduced growth rates (�yjjN, �tolC, �dctA,
�idnT, and �putP), Erlenmeyer flask experiments were con-
ducted after the removal of the antibiotic resistance gene (for
methods see ref. 27). Growth rates are reported for flask
experiments as mean � standard deviation for three replicates,
with the exception of duplicates for �yeaT. Strains were precul-
tured overnight in 2 g�liter glucose-supplemented M9 minimal
medium (strains tested for their ability to use propionate as a
carbon source were precultured in LB medium), resuspended in
M9 minimal medium with no carbon source, and transferred to
a new medium with a starting OD (at 600 nm) equal to 0.05. All
carbon sources were tested in M9 minimal medium (6.8 g of
Na2HPO4, 3 g of KH2PO4, 0.5 g of NaCl, 1 g of NH4Cl, 2 ml of
1M MgSO4, and 100 �l of 1 M CaCl2 per liter) with a concen-
tration of 2 g�liter. Nitrogen sources (2 g�liter) were screened in
W-salts minimal medium (30) containing succinate (2 g�liter).

HPLC Analysis of Medium. HPLC analysis of the growth medium
was conducted for parental and mutant strains growing on
thymidine as a sole carbon source. Cells were filtered from the
medium by using a 0.22-�m filter. An aminex HPX-87H anion-
exchange column (Bio-Rad Laboratories, Hercules, CA) then
was used to separate medium components on a Waters HPLC
system. A 5 M degassed solution of sulfuric acid was used as the
mobile phase with a flow rate of 0.5 ml�min. Each sample was
run for 35 min, and standards for thymine and thymidine showed
that they eluted off the column at 25 and 30 min, respectively.
UV absorbances were measured at 260 nm and 210 nm.

Enzymatic Assays. An expression vector containing the yeaU gene
was generated with the pCRT7 TOPO TA expression kit (Invitro-
gen, Carlsbad, CA) by using the manufacturer’s recommended
protocols. Transcription of the gene was induced by the addition of
75 mM isopropyl �-D-thiogalactoside (IPTG). Cells were lysed, and
the overexpressed protein in crude extract was partially purified by
using an Amicon �m 30,000-molecular-weight cut-off centrifugal
filter (Millipore, Billerica, MA). Kinetic assays were carried out at
room temperature as previously reported (at pH 8 instead of 8.4)
(31) with D-malate concentrations between 0.5 and 20 mM. All tests

were additionally performed on control lysates from cells harboring
a reverse-insert vector, where the yeaU gene was inserted in the
backward orientation.

RT-PCR Measurements of Expression Levels. BW25113 precultures
were grown in 250-ml Erlenmeyer flasks until reaching mid-log
phase and then transferred in triplicate into fresh media. Cells
then were harvested during mid-log phase (OD at 600 nm
between 0.2 and 0.5). Samples were RNA-stabilized by using
RNAProtect Bacterial Reagent, and a RNeasy mini kit was used
to isolate total RNA (both from Qiagen, Valencia, CA). cDNA
was prepared from the total RNA, and QIAquick PCR Purifi-
cation Kits were used to clean up the cDNA synthesis product.
The resulting cDNA then was quantified and used in subsequent
RT-PCR assays. Nine replicate RT-PCR measurements (three
replicates for each of the triplicate cDNA samples) were made
for each gene (including the reference gene, acpP) under the
specified growth conditions. cDNA from cells grown on L-lactate
was used as a control. A standard curve (generated by using
different amounts of genomic DNA instead of cDNA with fixed
primer concentrations) was used to determine the primer effi-
ciencies. The relative gene-expression levels were determined by
normalizing the amount of a cDNA product to the quantity of
acpP cDNA from the same cDNA sample.

ChIP. BW25113 and YeaT-8x myc-tagged cells were grown aer-
obically in M9 minimal medium with D-malate (2 g�liter) at 37°C
until an OD of 0.6 at 600 nm was reached. Triplicate experiments
were conducted for each strain. Cells then were treated with 1%
formaldehyde at room temperature for 30 min to allow cross-
linking to occur. YeaT-8x myc bound DNA was isolated for all
six samples by using previously described immunoprecipitation
methods (29). Quantitative PCR then was carried out on these
samples by using primers for the �155 to �2 region upstream of
yeaU and the promoter region of acpP. Triplicate quantitative
PCR measurements were made for each of the six samples.
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