BioBIKE Language Syntax
General Consideration of Syntax
A. English syntax as a model for the syntax of computer languages
You might think that people who seem to know a computer language either possess some special knowledge or are endowed with some magical ability to sense what’s right.

You were probably able to extract some meaning from that complicated sentence, and if so, you have all the basic tools necessary to understand a computer language. You did it, no doubt, without thinking, so let's try it again, this time WITH thinking. So wipe out your knowledge of English.
NOW how do you understand the sentence?

Well, of course you'd need an English dictionary. You look up You and get the basic meaning and the fact that it is a noun. You could look up the rest the words as well, one by one, but that clearly isn't enough. You also need to know some rules as to how the words work together,... syntax!

[image: image1.emf]object

Suppose you learn that English sentences may take a variety of structures, one of the simplest being:

You is a noun, might is a verb modifier, and think is a verb, says your dictionary. So far:

[image: image2.emf]noun

(subject)

verb

(predicate)

This, evidently, is a legal utterance, but what about the other 25 words of the sentence? Looking more closely at the dictionary entry for think, you find that it can serve as either a transitive verb (taking an object) or an intransitive verb (no object). So both of the following structures are OK:

[image: image3.emf]You

(subject)

[

might

]

think

(predicate)

This is useful, because your dictionary says that the fourth word, that, can introduce phrases that can replace nouns, perhaps like so:
[image: image4.emf]noun

(subject)

think

(predicate)

noun

(subject)

think

(predicate)

noun

(object)

or

Look back on these boxes:

 - Boxes with dotted boundaries represent defined holes

 - Boxes with solid boundaries represent holes filled with an object

 - Boxes with thick solid boundaries represent holes filled with functions that return an object
Complicated! Fortunately, computer languages are much simpler (otherwise computers couldn't understand them), and BioBIKE Language (BBL) is about as simple as you can get and still retain the ability to express everything you need in a language. However, like human languages, computer languages increase their powers of expression by permitting forms to be placed within forms multiple times.
B. Syntactical distinctions in BioBIKE
B.1. Atoms vs functions
B.2. Constants vs variables
B.3. Simple atoms vs aggregates
B.4. Result vs display
If you put frozen macaroni and cheese into a microwave, provide some additional arguments (e.g. the duration of cooking), and then click Execute, in not too long you'll get the result of the function: a hot dinner. The microwave may also beep at you to tell you it's done, a transient side effect of the operation. You can do further computations on the result of the function (for example eating it), but ordinarily, the side effect is acknowledged (perhaps), and then it's gone.
Every function in BioBIKE returns a result when it concludes successfully. You

Sin, It looks like the angle you gave me is in degrees, but I'm currently set up to work in radians."

BBL has one form:

[image: image5.emf]You

(subject)

[

might

]

think

(predicate)

that

people

(subject)

possess

(predicate)

knowledge

(object)

are endowed with

(predicate)

ability

(object)

where object is a hole that may be filled by a number, a string (a collection of characters), a list (a collection of objects), and other things we needn't concern ourselves with now. For example, if you go to the BioBIKE web listener and type into the command box:

47

 or "banana"
 or {47 "banana"}
the listener will be satisfied and respond by repeating back what you typed.

As in English, the object box may be filled with something that produces an object. In BBL, all legal functions produce objects of one type or another.

You will be pleased to learn that all BBL functions (unlike English generational structures) have a single general format:

[image: image6.emf]Function-name

Argument

(object)

object

Keyword

Flag

You might think of this as verb – noun – modifiers. The function box is represented with a thick solid boundary because it produces an object and therefore can fit into an object hole. The argument is an object given to the function (just like 90° may be an argument given to the sin function). An optional keyword clause contains an object, but optional flags do not. Keyword clauses and flags are represented by colored lines because they cannot be filled with objects. They're part of the function syntax. Depending on the function, there may be more than one argument, more than one keyword clause, or more than one flag.

All functions have at least the verb, the function name. Some consist only of the function name. For example:

[image: image7.emf]SEQUENCE-OF

A7120.chromosome

2000

TO

INVERTED

1000

FROM

…a verb-only function that closes your session. Some functions have only the function name and a required argument, such as:

[image: image8.emf]+

number

number

Many functions, perhaps most, allow optional keyword clauses to supply the function with additional values and optional flags to modify the operation of the function. For example:

[image: image9.emf]SEQUENCE-OF

47

banana

TO

INVERTED

bookbag

FROM

Like all BBL functions, this one produces an object (in this case a DNA sequence) that logically fits into an object hole. When the function is evaluated, the DNA sequence replaces the function, and you're left with just that sequence, an object, which is a legal BBL form.

[image: image10.emf]SEQUENCE-OF

ORTHOLOGS-OF all4312

TO

+

x

100

FROM

x

It's important to see that all BBL functions have this general verb-first form, even functions you might expect to behave otherwise. For example, 1 + 1 is fit into the same form: Verb first, then arguments:

It may seem strange to write addition in this way, but at the cost of promising the computer that all functions will be rendered verb first, we gain a freedom of expression unmatched in other languages. If the verb always comes first, then whatever comes first must be a verb, and we can invent new verbs with the confidence that they will be recognized as such.

The addition example illustrates that the syntax of a function may go beyond the mere specification of object holes: it can also impose a restriction as to the type of an object, e.g. a number. Here's another example:

[image: image11.emf]LOGOUT

BBL will reject this sentence because SEQUENCE-OF demands that its argument produces a sequence and that FROM and TO be followed by numbers.

It's clearly important to find out what are the syntactical requirements of any function you want to use. How do you do this? In fact, how do you know the function exists that does what you want? The first strategy is to click on the HELP box at the bottom of the BioBIKE web-listener, and then click on Available Functions.
 For example, if you do this, and then click on Sequence Functions, and finally on SEQUENCE-OF, you'll see a brief description of the syntax, followed by much documentation and many examples. The syntax, given as:
 (SEQUENCE-OF entity [DNA] [PROTEIN] [INVERT] [TRUNCATE] [WRAP] [FROM number]
 [FROM-END number] [TO number] [TO-END number] [LENGTH positive-number])
may be mentally translated into boxes, noting that […] indicates an optional flag or keyword clause.

If all the language could do is perform a necessarily limited number of functions, it would be as limited as English would be if limited to simple subject-predicate-object sentences. But like English, BBL allows you to replace any object with a function that produces an object. This makes complex expression possible. For example:
[image: image12.emf]LENGTH-OF

Organism,

gene, etc

�

�

�

�

�

�

�

�

�

�

�

�

� Be warned! This list of functions is far from complete! Until it is (soon I hope), there is no exhaustive public list of functions you can use within BioBIKE.

BBL Syntax (General) - 2

