
BBL Syntax (General) - 1

BioBIKE Language Syntax
General Consideration of Syntax

A. English syntax as a model for the syntax of computer languages
You might think that people who seem to know a computer language either possess some special
knowledge or are endowed with some magical ability to sense what’s right.

You were probably able to extract some meaning from that complicated sentence, and if so, you
have all the basic tools necessary to understand a computer language. You did it, no doubt,
without thinking, so let's try it again, this time WITH thinking. So wipe out your knowledge of
English.

NOW how do you understand the sentence?

Well, of course you'd need an English dictionary. You look up You and get the basic meaning
and the fact that it is a noun. You could look up the rest the words as well, one by one, but that
clearly isn't enough. You also need to know some rules as to how the words work together,...
syntax!

Suppose you learn that English sentences may take a variety of structures, one of the simplest
being:

You is a noun, might is a verb modifier, and think is a verb, says your dictionary. So far:

This, evidently, is a legal utterance, but what about the other 25 words of the sentence? Looking
more closely at the dictionary entry for think, you find that it can serve as either a transitive verb
(taking an object) or an intransitive verb (no object). So both of the following structures are OK:

This is useful, because your dictionary says that the fourth word, that, can introduce phrases that
can replace nouns, perhaps like so:

Look back on these boxes:

 - Boxes with dotted boundaries represent defined holes
 - Boxes with solid boundaries represent holes filled with an object
 - Boxes with thick solid boundaries represent holes filled with functions that return an object

noun
(subject)

verb
(predicate)

You
(subject)

[might] think
(predicate)

noun
(subject)

think
(predicate)

noun
(subject)

think
(predicate)

noun
(object)

or

You
(subject)

[might] think
(predicate)

that people
(subject)

possess
(predicate)

knowledge
(object)

are endowed with
(predicate)

ability
(object)

BBL Syntax (General) - 2

Complicated! Fortunately, computer languages are much simpler (otherwise computers couldn't
understand them), and BioBIKE Language (BBL) is about as simple as you can get and still
retain the ability to express everything you need in a language. However, like human languages,
computer languages increase their powers of expression by permitting forms to be placed within
forms multiple times.

SQ1. Complexify the sentence in the last box even further.

SQ2. Parse the following sentence, putting the words in appropriate boxes:

 "Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo"

It might help to view "Buffalo" as referring to the city in New York.

B. Syntactical distinctions in BioBIKE
B.1. Atoms

Log into BioBIKE, mouse over the black EDIT button in the palette menu, and click New Data
Box. You should see:

It is a dotted box, which is to say a hole, and the hole claims anything can go inside of it. OK, try
clicking on the box, typing in your favorite number (I chose 47), then pressing Enter. Now
execute the completed box, by mousing over the green action arrow, and clicking on Execute.

What could it possibly mean to "execute" 47? Evidently, BioBIKE thinks it makes sense,
because if you examine the blue Result window, you'll see that it gave you a result: 47. You can
type any literal object into the box, e.g., 47 or "banana" (including the quotes on each side), and
in each case, executing the box returns the literal object. These objects are atoms: things that are
indivisible. We'll see what non-atoms are momentarily.

SQ3. What happens if you put more than one atom in a box?

B.2. Literal atoms vs variable atoms

Edit the box you were working with in the previous section, by clicking within the box or by
mousing over the green action arrow and clicking Edit. Now put in the box your favorite letters.
When you put in "banana" before (and you did try it out with your own fingers, right?), you used
quotes. This time, just type in the letters with no quotes. Press Enter, Execute as before, and ...
whoops! An error message "Attempt to take the value of the unbound variable
`XYZ'." What's that all about?

BioBIKE, like any computer language, allows you to refer to values using symbolic names. You
can have the symbol x refer to the value 47, or "banana", or many other types of things. Let's fix
your error. Go to the DEFINITION menu and click on DEFINE. This function asks you to

BBL Syntax (General) - 3

provide the name of the variable and then its desired value. Give as the name whatever letter
combination you used that led to the error message, press Tab, and then give as the value your
favorite number. Press Enter, then Execute the function. No fireworks result, but the symbol
you defined now contains the value you gave it.

Now go back to the box with that symbol in it and re-Execute it. Before, executing gave an error
message. Now, executing it should give the value of the variable. Variables are also atoms, and
executing any atom returns the value of the variable. The value of "x" is "x", but the value of the
variable x is whatever value you've given it.

Any box that can take a literal of a certain type (e.g. a literal number) can also take a variable
that contains that type of value (e.g. a variable containing a number).

SQ4. Note that once you've executed DEFINE, a new button appears, called VARIABLE.
What's in that menu? What happens when you click on the thing inside? Experiment
with clicking on it under different circumstances.

SQ5. What can you name variables? Try DEFINing a variable called one+one as equal to
3. Try putting other symbols into the name of a variable. What's possible and what's
not?

B.3. Atoms vs aggregates

Not everything is indivisible. For example, the set of integers from 1 to 3 is composed of 3
atoms. There are many ways in BioBIKE to aggregate atoms. The most common is a list, which
contains an ordered sequence of elements. The elements are most often atoms but can themselves
be lists. For example, go back to the box you started with in Section B.1 and edit it so that it
contains a list of integers from 1 to 3. To make that list, you can simply put the numbers between
parentheses.

Pressing Enter to accept the entry and then executing the box returns the value of the list, which
is a list of the three numbers.

Recall that you defined some variable (say, x) a moment ago. What happens if you put the
variable in the list? Try doing that and then execute the box.

…no error, but probably not the result you were hoping for. Here's a clue as to why you got the
result you did. Notice that when you pressed Enter, the entry box closed (turned gray), and you
got something like:

The list is preceded by a single quote, indicating that the list that follows is to be interpreted as
literal atoms, including the symbol x, not the value of the variable x. There is no conflict with
my previous claim that "Any box that can take a literal... can also take a variable...", because the
variable is not in a box (not its own box), it's in a list! To make a list that includes the value of x,
we need to provide a separate box for each element, using the function called LIST. Go to the

BBL Syntax (General) - 4

LISTS-TABLES menu and click on LIST. Then click on the options arrow to add two more
items, giving:

Now you can click on each box to type in each of the elements of the list: 1, x, and 3, being sure
to press Tab to terminate entry for each item. Once that is done, execute. If you've defined x,
then you should produce a list containing the value of x.

Use (…) to make literal lists and use the LIST function to make lists that evaluate variables
contained within them.

Bioinformatics is the art of working with huge aggregates of data. There are other kinds of
aggregates that facilitate working with different kinds of data, but we'll consider them later.

SQ6. Create a list consisting of three elements: the first being the first three counting
numbers, the second being the first three uppercase letters of the alphabet, and the
third being the first three lowercase letters of the alphabet.

B.4. Functions

In English, a noun may be that which functions as a noun (the latter phrase being a convoluted
example). Similarly, an atom of a certain type may be replaced by a function that produces a
value of that type. English phrases have a bewildering number of formats. You will be pleased to
learn that all BioBIKE functions have a single general format:

You might think of this as verb – noun – modifiers. The function box is represented with a thick
solid boundary because it produces an object and therefore can fit into an object hole. The
argument is an object given to the function (just like 90° may be an argument given to the sin
function). An optional keyword clause contains an object, but optional flags do not. Keyword
clauses and flags are represented by colored lines because they cannot be filled with objects.
They're part of the function syntax. Depending on the function, there may be more than one
argument, more than one keyword clause, or more than one flag.

All functions have at least the verb, the function name. Some consist only of the function name.
For example:

…a verb-only function that tells you who else is using the system. Some functions have only the
function name and a required argument, such as:

Function-name Argument
(object) objectKeyword Flag

LENGTH-OF
Organism,
gene, etc

WHO-IS-HERE?

BBL Syntax (General) - 5

Many functions, perhaps most, allow optional keyword clauses to supply the function with
additional values and optional flags to modify the operation of the function. For example:

Like all BioBIKE functions, this one produces an object (in this case a DNA sequence) that
logically fits into an object hole. When the function is evaluated, the DNA sequence replaces the
function, and you're left with just that sequence, an object, which is a legal BioBIKE form.

SQ6. Be sure that you actually execute all of these functions. Use simple values to figure out
what they do.

It's important to see that all BBL functions have this general verb-first form, even functions you
might expect to behave otherwise. For example, 1 + 1 is fit into the same form: Verb first, then
arguments:

It may seem strange to write addition in this way, but at the cost of promising the computer that
all functions will be rendered verb first, we gain a freedom of expression unmatched in other
languages. If the verb always comes first, then whatever comes first must be a verb, and we can
invent new verbs with the confidence that they will be recognized as such.

The addition example illustrates that the syntax of a function may go beyond the mere
specification of object holes: it can also impose a restriction as to the type of an object, e.g. a
number. Here's another example:

BioBIKE will reject this sentence because SEQUENCE-OF demands that its argument produces
a sequence and that FROM and TO be followed by numbers.

It's clearly important to find out what are the syntactical requirements of any function you want
to use. How do you do this? The first clue is the prompts given in holes provided by a function.
SEQUENCE-OF (pulled down from the GENOME menu) specifies that it needs an entity (e.g.
a gene or a protein). Another way is to mouse over the green action arrow and click on Help.
This gives you a brief description of the function and a link to more information as to what are
the syntactical requirements.

If all the language could do is perform a necessarily limited number of functions, it would be as
limited as English would be if limited to simple subject-predicate-object sentences. But like
English, BioBIKE allows you to replace any object with a function that produces an object. This
makes complex expression possible. For example:

SEQUENCE-OF A7120.chromosome 2000TO INVERTED1000FROM

+ number number

SEQUENCE-OF ORTHOLOGS-OF all4312 TO + x 100FROM x

SEQUENCE-OF 47 bananaTO INVERTEDbookbagFROM

BBL Syntax (General) - 6

Try this out! ORTHOLOGS-OF is a function that returns genes that are similar to the given
gene. You can find it in the GENES-PROTEINS menu.

SQ7. Make a function nested to three levels (a function within a function within a function).

B.4. Result vs display

If you put frozen macaroni and cheese into a microwave, provide some additional arguments
(e.g. the duration of cooking), and then click Execute, in not too long you'll get the result of the
function: a hot dinner. The microwave may also beep at you to tell you it's done, a transient side
effect of the operation. You can do further computations on the result of the function (for
example eating it), but ordinarily, the side effect is acknowledged (perhaps), and then it's gone
forever.

Every function in BioBIKE returns a result when it concludes successfully. LENGTH-OF
returns the length of something. SEQUENCE-OF returns the sequence of something. But
sometimes things are more complicated. Suppose you are using an intelligent version of SIN
(more intelligent than BioBIKE's version), found in the ARITHMETIC menu, Trigonometric
Functions submenu. You provide it with an angle, say 180o. The function gives you a result,
-0.80115265, but at the same time it displays a message in a popup box: "It looks like the angle
you gave me is in degrees, but I'm currently set up to work in radians." This is a side effect of the
function. If you then grab ABS from the ARITHMETIC menu and PREVIOUS-RESULT
from the OTHER-COMMANDS menu and Execute:

getting 0.80115265. Of course. You didn't expect to get the absolute value of "It looks like the
angle you gave me…". The PREVIOUS-RESULT is the previous result, not the previous side
effect. In fact, side effects are promptly forgotten by BioBIKE. It remembers only results.

This all may seem obvious to you, but try this:

(getting DISPLAY from the INPUT-OUTPUT menu), and then:

Why did you get the result you got?

SQ8. Display the sequence of the first 1000 nucleotides of A7120.chromosome (see

GENOMES menu) and verify that the length of this sequence is 1000.

