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Abstract-During the past few years, I have been involved, in one way or another, 
with developing courses on simulation methods, simulation methodology, and ap-
plications of simulation techniques to real world problems. In the course of developing 
and teaching such courses, a reasonable step-by-step approach to the simulation of 
real world systems has evolved. This paper represents an attempt to present a 
“kernel” on the subject and it is not offered as a definitive treatment of the subject, 
but rather, it is offered in the hopes of stimulating further thinking and refinement. 

1. INTRODUCTION 

In a recent paper, Spanier [l] discusses some essentials of mathematical modelling. His 
discussion aims at developing a “kernel” methodology which he elegantly portrays in 
Fig. 1 of his same paper. In this figure, Spanier displays a flowchart/schematic for the 
mathematical modelling process. This schematic points the way to a methodology for 
communicating the essentials of mathematical modelling to students. In the following 
discussion we examine essentially the same problem for simulation modelling. 

2. THINKING SIMULATION 

With the advent of large core, high speed computers, as well as the new generation of 
low cost, mid-range minisystems, simulation approaches to real world problems are now 
reaching full bloom. Simulation software is now generally available for all levels of 
computer systems and configurations, and simulation societies and journals are now 
coming into being. 

With this in mind, we begin our discussion of a step-by-step approach to simulation 
modelling. Because this approach was developed for the nonscientist, we will be slightly 
more detailed in our discussion. 

3. THE SIMULATION METHODOLOGY 

In Fig. 1, the step-by-step simulation methodology is illustrated. The more mathema-
tical readers will notice similarities between Spanier’s [l] Fig. 1 and Fig. 1 in this article. 
This merely illustrates the optimality of the spine around which both approaches have 
been developed. Let us briefly discuss each of the steps in this approach. 
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Fig. 1. Step-by-step simualtion methodology. 

System identification 

As simple as it may appear to be, identification of the system to be simulated is a 
crucial step in the development of simulation. Far too many times I have seen students 
try to simulate much more than was necessary. And on rare occasions, I have seen 
students simulate less than what was necessary. Hence, questions of oversimplification 
or undersimplification are of extreme importance, particularly when the results of the 
decision-making situation might be utilized in some type of medical therapy regimen or 
airport tralTic planning program. One must remember that simulation involves the 
construction of some type of model which describes the system’s operation in terms of 
individual events, elements, and/or components. Further refinements involve descrip-
tions of the interrelationships between the components/elements of the simulation 
model. Thus, simulation is a means of dividing a model into its component parts and 
allowing one to investigate the results of the interactions between these parts. 
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Understanding how much or how little detail to place into a simulation model is one 
of the most difficult portions of the simulation scheme. It requires familiarity with the 
problem under investigation; i.e., what results are needed. It requires an understanding 
of the system to be simulated, hence the feedback between the data acquisition step and 
the system identification step in Fig. 1. Finally, it involves that elusive item known as 
“simulation experience.” This comes only from having tried to formulate many simula-
tions. 

There is no real shortcut explanation which will tell a student how to plan a simulation 
which has just the right level of complexity. What we attempt to do, in our classes, is to 
illustrate cases involving too little or too much complexity for the output information 
required. Useful examples which can be made to display all levels of complexity may be 
found in such problems as inventory control, large harbor waiting time simulations, and 
airport control simulations. I have found that a canonical example of levels of simulation 
complexity may be found in modelling the behavior of cellular systems. Details may be 
found in Witten [2-4]. Depending upon what are the questions one wishes to answer, it is 
possible to build a very simple simulation model into one which is quite complex. If one 
illustrates the increase of complexity in the simulation as a function of the change in 
complexity/output information required by the question being put to the simulation 
model, then the students build up an association which allows them to see how a 
question requires a certain level of simulation complexity. Further, one may then take a 
complex simulation and show why, though it might answer a simple question, it was not 
necessary to go overboard when a less complex simulation would have sufficed. 

Data acquisition 

Once the system for study has been identified, it is important to obtain as much 
knowledge/data on the system as is available. This is necessary for three important 
reasons: 

(1) Correct formulation of the simulation requires a well-balanced understanding of 
the real-world system and its behavior. Data acquisition will help develop this 
understanding. This will hopefully lead to a realistic/“correct” formulation of the 
simulation logic; 

(2) Any simulation has parameters whose values must be somehow ascert$ned. Data 
acquisition usually yields actual values of the parameters. Or, in the case where it 
does not yield values, it often leads to insights as to how one might estimate those 
values; 

(3) When it comes time to test the accuracy of the simulation, data must be available 
to do so. An efficient data acquisition step usually nets this necessary data. Or, it 
nets insights as to how to estimate the data values. 

Idenfijication of simulation variables 

In this step we define our input, output, and “interstep” variables. The “interstep” 
variables are those variables whose calculation is necessary in order to get from the 
input variables to the output variables, as formulated from our system identification 
analysis. 
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Definition of simulation approach 

At this point, we are ready to define the form of the simulation. In general, our 
lectures tend to categorize the simulation types as follows: 

Simulation language-such as GPSS, DYNAMO, SIMPAC, GASP, or SIM-
SCRIPT; 

Analytic-this simulation approach makes use of analytic equations which des-
cribe the dynamical behavior of the system; 

Monte Carlo simulation; 

Mixed type-this simulation approach mixes some combination of the previous 
three types of simulation. 

Formulate simulation model 

At this stagk of our methodology, we begin the actual formulation of the simulation. 
This may be simply a block diagram showing a rough logic flow; or, it may be a diagram 
with the appropriate equations/rules annotated in the correct positions. 

Flowchart simulation model 

While it is not always necessary to flowchart a simulation logic, we emphasize the 
efficiency of this step; particularly to beginners in the simulation world. At this point we 
also have a brief discussion of flow chart symbology and logic. It is important to 
emphasize that this is the first step where logic errors, as well as inaccuracies in 
formulation and system identification, may occur and be corrected. This is why we have 
a revision loop at this step. 

Program simulation model 

This step is self-explanatory. The students are encouraged to make use of CRT 
terminals, batch processing, or non-CRT terminal input methods to program their 
simulation. Programming_ may be done in any number of available programming lan-
guages or simulation languages. 

Test simulation or known data 

The importance of this step cannot be overemphasized. We have found that the 
general attitude in simulation is one of “ndw that I’ve gotten the thing programmed and 
running, it must work correctly.” Hence, we emphasize this step as a second check in 
our simulation methodology. Here, we use available data on the real world system as a 
check on the behavior of our simulation model. Excessive deviation between the two 
necessitates reevaluation and revision of the simulation. 

Evaluate simulation on data of it&rest 

At this.point, if all has gone well, and we have a reasonable level of confidence in our 
simulation model. then we are set to evaluate our simulation on the data of interest. 
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4. CLOSING THOUGHTS 

* This methodology, I have just described, has been included in a number of different 
courses over the past two years. An expanded discussion will appear in a set of lecture 
notes {S], which has been developed for a graduate systems analysis course offered by 
the University of Southern California Department of General Systems. 

In closing reflection I would like to reemphasize the fact that this discussion presents 
some ideas about systems modelling methodology. It is not meant to represent the final 
solution. 
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