
Current Medicinal Chemistry, 2004, 11, 1345-1359 1

0929-8673/04 $45.00+.00 © 2004 Bentham Science Publishers Ltd.

Free Energy of Ligand Binding to Protein: Evaluation of the Contribution of
Water Molecules by Computational Methods

Pietro Cozzini^, Micaela Fornabaio°, Anna Marabotti#, Donald J. Abraham§, Glen E. Kellogg§

and Andrea Mozzarelli*°

^Laboratory of Molecular Modeling, Department of General and Inorganic Chemistry, °Department of
Biochemistry and Molecular Biology and National Institute for the Physics of Matter, University of Parma, 43100
Parma, Italy
#Laboratory of Bioinformatics, Institute of Food Science, National Research Council 83100 Avellino, Italy
§Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia
Commonwealth University, Richmond, Virginia, 23298-0540 USA

Abstract: One of the more challenging issues in medicinal chemistry is the computation of the free energy of
ligand binding to macromolecular targets. This allows for the screening of libraries of chemicals for fast   and
inexpensive identification of lead compounds. Many attempts have been made and several algorithms have
been developed for this purpose. Whereas enthalpic contributions are evaluated using methods and equations
for which there is a reasonable consensus among researchers, the entropic contribution is evaluated using very
different, and, in some cases, very approximate methods, or it is entirely ignored. Entropic contributions are of
primary importance in the formation of many ligand-protein complexes, as well as in protein folding. The
hydrophobic interaction, associated with the release of water molecules from the protein active site and the
ligand, plays a significant role in complex formation, predominantly contributing to the total entropy change
and, in some cases, to the total free energy of binding. There are distinct approaches for the evaluation of the
contribution of water molecules to the free energy of binding based on Newtonian mechanics force fields,
multi-parameter empirical scoring functions and experimental force fields. This review describes these
methods – discussing both their advantages and limitations. Particular emphasis will be placed on HINT
(Hydropatic INTeractions), a "natural" force field that takes into account in a unified way enthalpic and
entropic contributions of all interacting atoms in protein-ligand complexes, including released and structured
water molecules. As a case-study, the contribution of water molecules to the binding free energy of HIV-1
protease inhibitors is evaluated.

Keywords: binding free energy, computational chemistry, water molecules, protein crystallography, drug discovery, in silico
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INTRODUCTION

The determination of the genome from Homo sapiens [1]
and several other organisms [2-5] has opened a new era in
the investigation of the molecular basis of diseases [6].
Pharmacogenomics [7], chemogenomics [8,9], proteomics
[10,11], and metabolomics [12] are just some of the so-
called "omics" sciences that were triggered by the genome
project. These sciences have allowed a more detailed
characterization and understanding of the biomolecules that
play a role in the transformation from normal to pathological
conditions [13]. As a consequence of this extraordinary
effort, the potential targets for drugs are expected to increase
from about 400 (today) to over 4000. This explosion
requires the determination of the three-dimensional structures
of a large number of proteins by X-ray crystallography and
nuclear magnetic resonance. Indeed, Structural Genomics
Initiatives have been already launched in several countries
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[14-16]. More protein targets of known three-dimensional
structure will encourage the design of more compounds that
bind to their active sites, acting either as
inhibitors/antagonists or activators/agonists [17-19]. In
addition, some of the "old" protein targets undergo amino
acid mutations under the selective pressure of efficient drugs
and bacteria express new enzyme activities in response to the
overuse of antibiotics. The result is a decrease in the ability
of a number of drugs to bind to their intended target protein,
thus becoming less effective disease cures. A classical
example of the first situation is HIV-1 protease where the
rate of amino acid mutations in the enzyme active site
challenges the capability of researchers to keep pace. For the
second situation, penicillin degradation by lactamase is
paradigmatic of the growing problem of antibiotic resistance
[20].

Considering these issues and the available resources, it is
becoming increasingly critical to accelerate the discovery of
new leads and to develop new strategies for "moving" targets
[21]. The traditional methods of screening proprietary
libraries of compounds obtained either by synthesis or
isolated from natural sources, as well as the recently
developed approaches of testing millions of chemical species
produced by combinatorial chemistry [22,23], the so-called
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Fig. (1). Representative example of a protein structure with water molecules detected by X-ray crystallography. The protein is the αβ
dimer of tryptophan synthase with bound a transition-state analogue of the α  subunit, 4-(2-hydroxyphenylthio)-1-
butenylphosphonic acid (green), solved at 2.3 Å [263]. Water molecules are shown surrounding the protein, near the ligand, and at the
subunit interface.

"the needle in the haystack search", now appear to be too
slow to meet this goal. Alternative "rational" approaches are
structure-based drug design [24-29], integrated with
combinatorial chemistry [30-32], NMR-based screening [33-
35] and "in silico" screening [36-42]. The key features of the
latter approach are: i) the availability of high resolution
three-dimensional structures of the targets; ii) the ability to
"dock" ligands designed or optimized by computer modeling
within protein active sites; and iii) the evaluation of free
energy of the interaction between ligands and proteins by
computational methods. Several excellent reviews have been
published to describe the molecular bases of protein-ligand
recognition [43], ligand docking, interaction forces and
physico-chemical or empirical models, as well as the pitfalls
[44-48]. Comprehensive and thoughtful descriptions of
methods aimed at the prediction of the binding affinity of
ligands to proteins have also appeared [49-53]. In the goal of
obtaining either relative or absolute affinities of ligands, the
evaluation of the contribution to the free energy of binding
played by water molecules either bound to active site
residues or to the ligand is "hard to determine and hard to
model" [54]. This is initially quite surprising given the
ubiquitous presence of water molecules in biological
systems. Indeed, Ladbury’s statement emphasizes the
difficulties that researchers have encountered in the
quantitative description of such a "simple" process as the

association of a ligand with a protein in an aqueous medium
[55-57].

A WATER "WORLD"

Life processes depend on water at the macroscopic and
molecular levels [58]. For the former it is sufficient to state
that the year 2003 was declared by the United Nations as the
Year of Water [59]. Also, water plays a variety of cellular
functions, being the solvent of most biological molecules,
the substrate and product of enzymatic catalysis, a building
block of macromolecules, and a "lubricant" via the formation
of networks linking distant residues [60-62]. Moreover, the
thermodynamic balance associated with attaining the native
state of nucleic acids and proteins is strongly dependent on
water, with hydrophobic interactions together with hydrogen
bonds being crucial in shaping and stabilizing biological
macromolecules [63]. The thermodynamics of ligand-protein
and protein-protein recognition is water-dependent with both
enthalpic and entropic contributions. These multiple roles
played by water are associated with its unusual and
amazingly unique properties. Its small size, the dipolar
nature caused by its charge distribution, the highly
directional hydrogen bonds as both donor and acceptor and
the entropic gain associated with the release to bulk solution
of water molecules bound to biomacromolecules and ligands
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Fig. (2). The cartoon represents water molecules bound to a protein active site and a ligand, before and after formation of a ligand-
protein complex.

are all key features that help explain water-water and water-
solute interactions [64, and references therein]. Here, we will
first briefly outline the information and theories for the
structure, dynamics and function of water bound to proteins.
On this basis, the encounter between a protein and ligands
will be described at the molecular level, as part of a long-
standing effort to derive predictive models for the strength of
the interaction between proteins and ligands. The
multiplicity of the proposed models reveals the complexity
of properly taking into account the energetics associated with
the movement of water molecules bound to proteins and
ligands in the formation of a complex, i.e., the hydration
and dehydration processes.

Because Nature does not like empty spaces, water
molecules generally occupy all the available space not
occupied by other (protein and/or ligand) atoms. Water
molecules may even occupy sites that appear to be
energetically unfavorable for them. X-ray and neutron
diffraction and nuclear magnetic resonance studies have
provided most of the information on the distribution of
water molecules localized either within or on the surface of a
protein (Fig. (1)). In a typical protein there are about 200
water molecules [65]. However, this number strongly
depends on the quality of the structural determination [63],
being one water molecule per residue at 2.0 Å and 1.6-1.7 at
1.0 Å resolution [65,66]. The analysis of 873 protein crystal
structures determined at room temperature and 33 structures
determined at low temperature indicated that there is a weak
dependence between the number of water molecules and the
fraction of polar/apolar surface, but there is no apparent
influence by temperature [66]. This first result is somewhat
surprising since water is expected to preferentially interact
with polar residues. These findings indicate that the
localization and count of water molecules within a protein
matrix may vary from one protein to another depending on
the resolution. Therefore, protein hydration remains ill-
defined and ill-understood as there is clearly "no rigid shell
of water around a protein molecule but rather there is a
fluctuating cloud of water molecules that are
thermodynamically affected more or less strongly by the
protein molecule" [67]. Water molecules interacting with a
protein have been classified and modeled depending on their
localization and residence time. The concepts of first and
second hydration shells [68,69], water bound to flexible or

fixed side chains in wide, deep or narrow crevices, small or
big cavities in the interior of the protein [65], distribution
hierarchies [70] and proximal or perpendicular radial
distribution functions [71-73] are among many put forward
to link simulation and experimental evidence. Buried and
tightly bound waters exhibit residence times of the order of
hundreds of picoseconds [74-77], whereas water molecules
that are more on the surface and in contact with bulk waters
exhibit residence times of the order of 5-50 ps [71,77-81].
Computational simulations can provide details on water
networks within a protein, pathways that allow water to
move from one site to another, and pathways that provide
access to sites located deep in the protein core [82].

The interaction of a protein with a ligand is a coordinated
process that involves the breakage and formation of several
hydrogen bonds, including the reorganization of water
molecules around the ligand and within the protein active
site (Fig. (2)). A detailed molecular description and a
thermodynamic evaluation of these events are critical for
drug design [54,83]. A topological analysis of high
resolution structures of protein-ligand complexes indicated
that water molecules mediate recognition via formation of
hydrogen bonds [84]. Strongly bound water molecules in the
active site of a protein are not easily displaced in ligand
binding, thus structurally modifying the shape of the protein
surface recognized by a ligand [85]. It was also found that
some water molecules are conserved within the active site of
homologous proteins [86]. Careful analyses of the three-
dimensional structure of proteins in the absence and presence
of ligands have allowed a partial, yet valuable,
understanding of the role played by individual water
molecules in complex stabilization. Comparison of the
structure of the Fv fragment of the anti-hen egg white
lysozyme antibody D1.3 between the free and bound forms
indicated the presence of four buried water molecules and
others creating a network that bridge the antibody to the
antigen [87]. Of these bridging water molecules, ordered
water molecules present in the free form of the protein are
retained in the complex, while others are only present in the
complex. This suggests that complex formation is associated
with solvation or a decrease in water mobility, making these
water molecules detectable in the complex and undetectable
in the protein free form. On the basis of this structural
evidence, the thermodynamic forces that lead to complex
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formation were suggested to be hydrogen bonding, van der
Waals interactions and enthalpy of hydration rather than
hydrophobic interactions, consistent with calorimetric
measurements. Similar studies were carried out on the same
D1.3 antibody-hen egg white lysozyme, on D1.3 antibody
bound to anti-lysozyme antibody E5.2, and on barnase
bound to barstar [88]. Water molecules bridging the two
proteins in each set accounted for about 25% of the total
binding affinity. The effects of amino acid replacement on
the binding energy of complex formation are explained both
by direct changes associated with residue mutation and
indirect changes due to water molecule reorganization near
the mutation site. Furthermore, buried water molecules were
found to be key elements in the energetics of the interaction
between a bacterial oligopeptide transporter protein and its
ligands [89], in mediating DNA-tryptophan repressor
recognition [90], and in the specificity and binding affinity
of saccharides to lectin [91].

The incorporation of a water molecule into a protein-
ligand interface can lead to a free energy change of –1.67
kcal/mol at 298 K [54,92]. However, there are examples
where water incorporation into a binding interface is believed
to be energetically unfavourable and thus inhibitors have
been designed to displace these waters [93-96]. The
computational method GRID was developed to locate water
molecules as well as other groups within a protein matrix
[97]. The interaction energy between the probe and the
protein is evaluated using an empirical energy function based
on Lennard-Jones, electrostatic and hydrogen bond
contributions. The agreement between predicted and
structurally determined sites of water molecules and other
groups has often been found to be within 0.3-0.5 Å. This
finding suggests that within the protein active site there are
energetically favored locations for water molecules. These
molecules are termed "conserved waters" and can be assumed
to be an integral part of a protein site, thus modifying its
actual shape and functional and topological profiles. Several
improvements were applied to the original GRID functions
in order to design selective ligands incorporating the
presence of water molecules [98-102]. The placement of
single water molecules was also carried out in the FLEXX
docking algorithm using a "particle concept" [103]. Other
methods were also developed to locate water molecules
using knowledge-based water positions derived from X-ray
crystal structures [104,105] and a hybrid K-nearest-neighbors
genetic algorithm, Consolv [106].

BINDING FREE ENERGY OF PROTEIN-LIGAND
COMPLEXES

"Free energy is arguably the most important general
concept in physical chemistry" wrote Peter Kollman in 1993
[107]. The free energy for the formation of a protein-ligand
complex is equal to:

 ∆Gbind = ∆H – T ∆S, (1)

that, under equilibrium conditions, is equal to:

∆G° = ∆H° - T ∆S° = - R T Log (Keq) (2)

The binding free energy contains both enthalpic and
entropic contributions that in many reactions of biological
systems compensate each other [108]. Although enthalpy-

entropy compensation has in the past been regarded as an
‘ubiquitous property of water’, this appears to be a property
of all weak intermolecular interactions, of which hydrogen
bonding in aqueous solution is merely one of the most
frequently encountered in biochemical reactions. The
thermodynamic rationale for enthalpy-entropy compensation
is based on the fact that, as the binding becomes stronger,
enthalpy becomes more negative and entropy concomitantly
tends to decrease due the formation of a tight complex. On
the contrary, as the binding becomes weaker, enthalpy
becomes less negative and entropy tends to increase due the
formation of a loose complex [108]. To explicitly include
the contribution of the role of water molecules associated
with binding, equation (1) can be written as:

∆Gbind = ∆Ginteract – ∆Gsolv,L – ∆Gsolv,R (3)

where ∆G interact is the interaction free energy of the
complex, ∆Gsolv,L is the free energy of desolvation of the
Ligand and ∆Gsolv,R is the free energy of shielding the
Receptor (protein active site) from water molecules [109].
The estimation of the individual contributions is a difficult
task due to limited knowledge of the relative relevance of the
interacting forces that are themselves strongly dependent on
the character of individual complexes. Moreover, each
contributing term can be large whereas the net result is
usually small, thereby imposing a large uncertainty on that
result. In some cases, the enthalpy gain can be derived from
making extra water-mediated hydrogen bonds greater than
the entropic penalty that must be paid for immobilizing
water molecules [54].

The hope for accurate measurements of the terms in
equation (3) is to combine high resolution structural details
with accurate thermodynamic data. In many biomolecular
interactions removing water from a binding site is
energetically favorable. This is due to the entropic gain when
surface-associated solvent molecules are released into bulk
solvent. With thermodynamic arguments it is possible to
explain the fact that water can provide an overall favorable
contribution to the free energy of binding of the interface by
providing its maximal number of hydrogen bonds at the
right proximity and orientation. Analysis of conserved water
binding sites indeed indicates that these are sites where the
interactions are highly favorable in terms of hydrogen bond
lengths, positioning, and electrostatic and Lennard-Jones
potentials.

Due to the relevance of water in structure-based drug
design it is essential to address the following issues: i) if a
water molecule is already present on the binding surface in
the free (unbound) state of interacting molecules, will the
formation of the complex provide sufficient additional
hydrogen bonds (or sufficiently strengthen existing hydrogen
bonds) to obtain a net favorable free energy change?, ii) can
the ligand surface be designed in such a way that the
existing water molecules can make an optimal arrangement
of hydrogen bonds?, iii) how large is the entropic cost
associated with the binding of water molecules to proteins or
other macromolecules? Dunitz determined this contribution
starting with data on the transfer of a single water molecule
to a site where it cannot move [92]. The standard entropy of
liquid water is 16.7 cal mol-1 at 298 K. What happens in
proteins? Water molecules in a crystalline protein are
unlikely to be bound more tightly than a water molecule in a
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crystalline hydrate salt, where its entropy contribution is
about 10 cal mol-1 K-1. Thus, the entropy cost of
transferring a water molecule from the liquid to the protein
has an upper bound of this difference, i.e., about 7 cal mol-1
K-1, corresponding to a free energy cost of 0-2 kcal mol-1 at
300 K, the upper values referring to water molecules that are
firmly bound (conserved waters) [92].

Protein-ligand as well as protein-protein recognition is
analyzed on the basis of the different forces involved in the
process. Whereas hydrogen bonding and van der Waals
contributions are mainly relevant in achieving specificity
between interacting molecules, hydrophobicity plays a major
role in the stabilization of protein-protein complexes [110].
The role of hydrophobicity in protein-ligand complexes may
also be significant, depending on the hydrophilic or
lipophilic nature of the interacting species. One key concept
developed for the evaluation of the hydrophobic contribution
to biomolecular interaction is the molecular surface area
accessible to solvent (SASA) for the interacting groups.
SASA, introduced to quantitatively treat the role played by
the solvent when a complex is formed, is "the area on the
surface of a sphere with radius R, on each point of which the
center of a solvent molecule can be placed in contact with
the atom without penetrating any other atoms of the
molecule" [111]. SASA is correlated with the hydrophobic
free energy because it should depend on the number of water
molecules that are released during complex formation, and
thus it measures the entropic gain derived from these water
molecules that are no longer coordinated to polar groups.
This contribution may account for about 25 cal mol-1 per Å2

of accessible surface area in the case of protein residues
[110,112,113] or as much as 45 cal mol-1 per Å2 [114]. In
the case of protein-protein complexes, the reduction of
surface area accessible to solvent can be about 1000-1500
Å2, resulting in a hydrophobic free energy of 25-40 kcal
m o l -1 [110]. This approach was considered to be
oversimplified because it did not take into account the
polarity of the groups [68]. The contribution of protein-
solvent interactions to the free energy of binding or during
folding was assumed to be the sum over all atoms involved
in binding or folding (with the exception of hydrogen
atoms) of the product of SASA (A) and ASP (∆σ), the latter
being the atomic solvation parameter that measures the
transfer of an atom from the interior of a protein to aqueous
solution [68], i.e.,

∆Gi = Σ ∆ σi Ai (4)

The polarity of the interior of the protein was assumed to
be that of 1-octanol. A key assumption is that the solvation
free energy results from the additive contributions of all
atoms. This concept originated from studies carried out by
Hine and Mookerjee [115] and Leo et al. [116].

Other models were developed based on weighted atomic
pairwise surface burial [88] and on a weighted solvent
accessible surface area (WSAS) [117]. In the latter model,
the solvation free energy is evaluated using the equation:

Σ Σ
m n

i

j=0i=0

∆GWSAS Wi  Sj=

(5)

where m is the number of atom types for a given model and
ni are the number of atoms with atom type i in a molecule;

wi is the solvation free energy weight of atom type i and Sj
is the solvent accessible surface area of atom j. Fitting
procedures were applied to define training sets of compounds
in order to derive the weights wi. The model was used to
predict the free energy of five binding modes of efavirenz
complexed to HIV-1 reverse transcriptase, determining that
the most favorable conformation exhibits a binding free
energy of 10 kcal mol-1 lower than other binding modes
[117]. Another method estimated the binding free energy of
peptidic inhibitors of HIV protease mutants using a
dielectric continuum solvation approach to calculate
electrostatic hydration contribution, exposed surface area,
semiempirical quantum chemistry to determine the
protonation state of active site residues, and molecular
mechanics for the determination of relative binding energies
[118].

Several methods were developed to take into account
solvation in molecular docking. DOCK [119] corrected the
electrostatic interaction energy with a ligand electrostatic
solvation energy, and the van der Waals component of the
interaction energy with a non-polar parameter for ligand
solvation [109]. This method was applied to screen the
Available Chemicals Directory for ligands to bind to
thymidilate synthase, dihydrofolate reductase and T4
lysozyme leading to an improvement of the ranking of
known ligands and selected molecules with reduced charge
and size. The solvation correction also significantly
improved the agreement between calculated and experimental
free energies. However, these DOCK energy solvation-
corrected calculations still over-predicted free energy by three
to five kcal mol-1 compared with the experimental values
[109]. Another docking program, FLOG (Flexible Ligands
Oriented Grid) [120], makes use of several potentials for
electrostatic, hydrogen bonding, van der Waals and
hydrophobic contributions. Only conserved water molecules
are considered as their presence modifies the protein active
site structure. Ligand flexibility was included by allowing
up to 25 explicit conformations for each structure. The
program was applied in the search from a database for
inhibitors of metallo-β-lactamase [121], HIV-1 protease
[122] and dihydrofolate reductase from L. casei, in the
presence of NADP and two active site conserved waters,
water 201 and water 253, whereas other water molecules
were removed [120]. In the third version of the program
AutoDock, developed by Olson and co-workers [123],
structural water heterogeneity is incorporated in an
automated docking procedure [124]. Protein mobility, a
challenging issue for docking ligands, is also taken into
account. The program was applied to evaluate 21
peptidomimetic inhibitors of HIV-1 protease where a
structural water, important for complex stability, is present
in 20 of the considered structures and is displaced in the
remaining one by a cyclic urea inhibitor.

FREE ENERGY AND THERMODYNAMIC
ADDITIVITY

One fundamental principle that has to be taken into
account in calculating free energy of binding is that the free
energy is a state function and thermodynamic additivity can
be applied only if components (groups or atoms A, B, C…)
or contributions (∆ G i o n i c ,  ∆ G hydrogen bonding,
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∆Gvan der Waals, ∆Gnon-polar solvation,….) are independent.
As pointed out by Dill [125], "if tetraalanine binds a
protein, does the free energy equal four times that of the
binding of alanine? Is protein folding the sum of oil-to-water
transfers of each amino acid? Can we add surface area-based
solvation terms to molecular dynamics force fields? Are the
conformational entropies of biopolymers simple sums of the
monomer entropies or of backbone plus side chain
entropies?" In many models, additivity is erroneously
assumed, likely leading to incorrect determination of the free
energy of binding. However, deviations from non ideal
behavior might be small and predicted values may be within
a few kcal mol-1 with respect to the experimental data, a
penalty that may be acceptable in exchange for fast screening
of many thousands of compounds.

MOLECULAR MECHANICS, MOLECULAR
DYNAMICS AND MONTE CARLO SIMULATIONS

Prediction of the strength of noncovalent binding
between molecules and prediction of the 3D structure of the
corresponding complexes have been the overriding goals in
computational chemistry for many years. During the past
decade the advances made in computer-aided drug design and
computational studies have had a large impact on the drug
design process and in the search for new pharmaceuticals.
Methodologies based on force field calculations, such as
molecular mechanics (MM), molecular dynamics (MD), and
Monte Carlo (MC) simulations, have been key to these
developments. These topics are treated in specific sections
below.

Molecular mechanics force fields represent the
cornerstone of all simulations of complex chemical systems.
They are extensively used in calculating structural and
thermodynamics properties of biomolecules. Some of the
force fields more commonly applied to biomolecules are
AMBER [126,127], CHARMM [128] GROMOS [129]
OPLS-AA [130], DISCOVER [131], TRIPOS [132],
MMFF [133], MM2 [134], MM3 [135] and MM4 [136]. In
particular, the AMBER, CHARMM and GROMOS force
fields are routinely used in calculating relative solvation free
energies (SFEs) of small organic molecules and relative
binding free energies of ligands, whereas the MMFF force
field is aimed at simulating protein-ligand complexes
[52,137]. The typical potential energy function of molecular
mechanics force fields is:

 

Σ Σ

Σ Σ

Etotal =
bo nds

Kr(r - r eq )2 + Kθ(θ -θeq )2 +

Vn

2
[1 + cos(nφ - γ)] +

Aij

R12
ij

Bij

R6
ij

an gles

dihedrals i<j

qiqj

εRij

(6)

A characteristic of all current force fields applied to
biopolymers is that they are two-body additive, meaning
that the potential energy function (eq. 6) is a function of
atom pairs. With these models it is possible to implicitly
include many-body effects in the parameterization.

Solvent Models

The influence of the solvent on the electrostatic
interactions that play a relevant role in many biological
processes has been deeply investigated. This requires
modeling the solute and the solvent and the interactions
between them [138-141]. Molecular mechanics describes
solute or solvent molecules or both on the basis of a force
field and intermolecular interactions are taken into account
by non-bonded van der Waals and Coulombic electrostatic
terms. Solvent effects are described by calculating the
mutual interactions of a large number of molecules and
averaging these over many solvent configurations [138].
Biological molecules are surrounded by water and solvation
is a parameter that influences several properties of
biomolecules such as solubility, reaction rate equilibria,
partition coefficients, and enzyme-substrate and ligand-
receptor binding [137]. In free energy calculations solvent
can be represented using either an explicit or an implicit
solvent model, the choice depending on the available
computer resources and/or the quality required in the result.
Many implicit solvation models for proteins have been
developed that combine an empirical molecular mechanics
force field for the intramolecular interactions in vacuum with
a solvation correction. These models can be used for analysis
of the contributions of solvation and desolvation [142].
Alternative approaches of implicit solvation involving
continuum or macroscopic models in which solvent
properties are described in terms of average values [138] may
also be applied. Relative solvation free energies can often be
obtained with fair accuracy with implicit solvent models
such as the Generalized Born/surface area (GB/SA) method
[143], or with greater accuracy at larger expense with
continuum methods that involve solution of the Poisson-
Boltzmann equation [144,145].

While implicit solvent models are generally most useful
in macromolecular systems where long simulations are
required to reach convergence, in many cases explicit solvent
models can have significant advantages. Potential functions
for water have been under development for more than 30
years [52,137, and references therein]. The explicit solvent
models currently most often used were developed in the
1980s and are called TIP3P, TIP4P [146], SPC [147], and
SPC/E [148]. The empirical adjustment of the parameters in
these models allows the user to reproduce the enthalpy of
vaporization and the density of water. In particular, because
TIP3P, SPC, and SPC/E solvent models are simple and
relatively fast, and provide good results, they are often used
in computer simulations of both small and large molecules.
The SPC/E model very accurately reproduces experimental
properties of water, such as the dielectric constant and
diffusion coefficient. Jorgensen recently developed a TIP5P
model that better describes the temperature dependence of the
density of water [149]. While for many applications the
explicit treatment of solvent molecules and mobile ions is
not easily accessible, the improved accuracy of calculated
relative binding affinities of ligands to proteins may be
worth the computational expense [137].

Calculations of the relative solvation and binding free
energies between two similar molecules are usually carried
out by MC or MD simulations in conjunction with the
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thermodynamic cycle perturbation approach with explicit
solvent [137]. The methodology gave satisfactory agreement
with some experimental results within ± 1.0 kcal mol-1, but
a potential problem for solvation and binding free energy
calculations is the difficulty in reaching simulation
convergence. Proper convergence of the free energy
calculations requires simulation times much longer than
previously estimated [150-152].

Simulations on Protein-Ligand Interactions

Molecular dynamics (MD) and Monte Carlo (MC)
methods have provided dynamic and atomic insights into
biological systems. Among the methods for protein-ligand
binding free energy prediction, the rigorous free energy
perturbation (FEP) and thermodynamic integration (TI)
methods have been successfully applied, but they are
computationally expensive [107,153,154]. Other less
rigorous methods have been developed to evaluate binding
free energies, such as the linear interaction energy (LIE)
[155] and the molecular mechanics/Poisson Boltzmann
surface area (MM/PBSA) methods [52].

Free Energy Perturbation and Thermodynamic
Integration Methods

From a thermodynamic point of view, the most rigorous
methods among those currently available for prediction of
the relative free energy of binding of ligands to proteins are
free-energy-perturbation (FEP) or thermodynamic integration
(TI) methods, with explicit consideration of solvent
molecules and flexibility of both the receptor and the ligand
[156,157]. The explicit consideration of water is usually
implemented by solvating with a sphere around the active
site with water molecules. The free energy perturbation
approach for calculating relative free energies of binding
between two ligands (L1 and L2) and a given receptor (P)
employs the thermodynamic cycle shown in Scheme (1)
[52,107,153-155]:

L1+ P C1

∆Gb
1

C2L2+ P
∆Gb

2

∆GP∆Gsolv

Scheme 1. Thermodynamic cycle used in FEP procedure for the
calculation of the relative binding free energy between two
ligands bound to the same protein.

Thus,

 ∆∆G = ∆Gb
1 – ∆Gb

2 = ∆Gsolv – ∆GP (7)

where ∆Gb
1 and ∆Gb

2 are the binding free energies for
ligands L1 and L2, respectively, and ∆Gsolv and ∆GP are the
non-physical transmutation free energies from ligand L1 to
ligand L2 in free and bound states representing the
differences in solvation free energy between L1 and L2 in

water and when bound to the solvated receptor site. If ligand
1 and 2 are similar to each other, then ∆Gsolv and ∆GP are
usually easier to calculate than ∆Gb1 and ∆Gb2 because the
mutation from ligand 1 to ligand 2 is assumed to cause only
localized changes, and FEP or TI is used to calculate ∆Gsolv
and ∆G P. The following equation (8) is used in FEP
calculations,

 
Σ
N-1

1n
RT

∆G = -RT
i=1

exp
H(λ i+1) - H(λi)

λi (8)

where ∆G is the free energy difference between two states, A
and B. λ i varies from 0 (state A) to 1 (state B), H(λ i) is the
Hamiltonian of the system at λ i and 〈  〉λi indicates an ensemble
average. In the TI method, the average of derivatives of the
Hamiltonian at each λ, H(λ), is calculated and the numerical
integration over λ  is used to determine the free energy
difference between two states,

 
∫ ∂H (λ )

∂λ∆G =
1

0
dλ

(9)

where λ has the same meaning as in FEP [52,158]. With the
FEP method it is possible to calculate the free energies
associated with the two "unphysical" vertical paths L1 →
L2(aq) and C1 → C2(aq) corresponding to a mutation of L1
into L2 in the free and bound states. The ensemble averages
along these paths are calculated by MD or MC simulations.
The paths are typically divided into a number of steps, each
represented by a separate potential energy function built up
as a linear combination of the initial and final state
potentials [155].

The FEP approach is generally regarded as the most
important technique for free energy calculations by MD or
MC simulations, but frequently a number of problems are
encountered. First, the most severe limitation is the
extensive conformational sampling usually required in order
to obtain convergent results from the simulations, so that
the results can be very sensitive to the length of the
simulation. Second, FEP methods also depend on the
accuracy of the applied force field [107,153] and require large
computational resources for force field parametrization as
well as for the requisite MC/MD calculations. Third, FEP
methods only allow for minor chemical differences in the
ligands to predict reliable relative free energies, i.e., the
"perturbations" involved in FEP cannot be too drastic.
Fourth, most of the computer time is spent on
"uninteresting" configurations corresponding to an
unphysical "mixture" of L1 and L2 [155,159,160]. Fifth, the
results depend on the protocols used for the simulation.
Finally, before applying this methodology for predicting
binding affinities of new analogs of a lead ligand, the length
of simulation, the number of windows and force field
parameters need to be carefully validated for ligands with
known experimental data [137]. However, free energy
perturbation methods have the advantage of very accurately
predicting differences in binding affinity to a receptor for
structurally similar ligands, which is an extremely important
application for drug discovery. Most of the results suggest
that existing methodologies provide good agreement with
experimental results [137]. The energetic cost of desolvation
is evaluated by solvation free energy calculations, which can
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also help in optimizing the ligand by highlighting structural
changes that minimize the desolvation penalty. Furthermore,
separation of the free energy into enthalpy and entropy terms
and for each individual chemical group provides information
about the dominant contributions and relevant residues in
the binding process.

To predict relative binding free energies accurately, the
FEP method must calculate the relative difference of solvent
free energies between two ligands, as well as the free energy
differences for the complexes [137]. Desolvation free energy
is an important factor and it is neglected in most
approximate methods to determine relative binding
affinities. Its importance is evident using the FEP method.
There have been several applications of the thermodynamic
cycle (Scheme (1 )) to protein-ligand interactions
[52,107,137, and references therein]. One of the earliest was
McCammon’s perturbation study of substituted
benzamidines interacting with trypsin [161] that was later
also investigated by Bash et al. [162]. Another success of
the FEP calculations was to show the influence of
desolvation involved in the binding of transition state
inhibitors to thermolysin [163], their prediction being later
experimentally confirmed [164]. More recently, calculations
of relative binding free energies of closely (structurally)
related ligands to dihydrofolate reductase were accurate
enough for quantitative conclusions [165].

Absolute binding energies can in principle also be
calculated with FEP methods by setting the interaction
potential of the ligand to zero in one of the states. In order
to enhance conformational sampling in macromolecular
simulations, Ota et al. [166] combined non-Boltzmann
sampling of configuration space with TI (NBTI). This so-
called "umbrella" sampling is advantageous because it
increases the sampling of the conformational space by
enhancing the ligand flexibility by reduced energy barriers to
rotation. The relative binding free energies of trypsin to the
two inhibitors benzamidine and benzylamine were
determined using NBTI, obtaining smaller deviations
between calculated and experimental relative free energies
than the classical TI.

Linear Interaction Energy Method

The linear interaction method (LIE) is a semi-empirical
approach, originally proposed by Åqvist et al. to estimate
absolute binding free energies [155,160]. This method was
developed to obtain useful information on binding energetics
from simulations of the only physically relevant states (free
and bound) of the ligand [155,160]. LIE does not require
simulations of any transformation processes and allows
comparisons of compounds with very different structures.
The method uses time averages from two simulations, one
for the ligand in water (free state), the other for the ligand
bound inside the macromolecule surrounded by water (bound
state). The binding free energy is evaluated from the
difference between them [160,167]. This method is based on
the assumption of a linear response of the solvent
polarization to changes in the electrostatic field exerted by
the solute, and a single solvent dielectric constant [52,160].
LIE divides the interaction between the ligand and its
environment into polar (electrostatic) and non-polar (van der
Waals) parts. The binding free energy is estimated as:

∆Gbind  = ∆Gel
bind  + ∆Gvdw

bind = α      Vl- s:bou nd

+ β Vl-s: b ound
vdw Vl-s:free

vdwVl-s: free
el

el

(10)

where Vel
l-s:bound and Vvdw

l-s:bound are the electrostatic and
van der Waals interaction energies between the ligand and
the solvated protein from an MD trajectory with ligand
bound to protein; Vel

l-s:free and Vv d w
l-s:free are the

electrostatic and van der Waals interaction energies between
the ligand and the water from an MD trajectory with the
ligand in water; 〈 〉denotes an ensemble average, and α and β
are two empirically-determined parameters. The main
strength of the method is the explicit treatment of the water
reference state and its treatment, at a microscopic level, of
details that can be important for binding, such as
interactions with active site water molecules. Åqvist and co-
workers have applied this method to calculate absolute
binding free energies of several protein-ligand complexes.
They found that α = 0.5 and β = 0.16 gave good agreement
between calculated binding free energies with experimental
data. The coefficient α = 0.5 is a consequence of assuming a
linear response of the surrounding to the electrostatic field,
while β is an empirical parameter that relates the average van
der Waals interaction energies to a corresponding nonpolar
("hydrophobic") binding contribution that can be fitted to
experimental binding free energies. The calibration set used
to determine the optimum value of β was comprised of a
series of endothiapepsin inhibitors with known binding
constants [160]. This method was also successfully used to
calculate absolute binding free energies of HIV-1 protease
inhibitors and two charged benzamidine inhibitors bound to
trypsin [167,168]. An additional correction term for long-
range electrostatic contribution to the binding free energy
was included in these studies. In both the simulations of the
complexes and of the ligands in aqueous solution, spherical
systems with restrained boundaries were used and water was
represented by the SPC model [147] with the surface
molecules of the sphere subjected to radial and polarization
restraints according to the Surface Constrained All-Atom
Solvent model [169]. More recently, the LIE method has
been revised [170] and, subsequently, used in investigating
protein ligands, including inhibitors of dihydrofolate
reductase [171] and human thrombin [172].

From the numerous studies that have successfully
applied the LIE method a question arose whether one set of
α and β can be used in different protein-ligand complexes to
give reasonable estimates of binding free energies. The use
of distinct force fields cannot explain the difference in α and
β found in simulations. This issue was further investigated
in seven different complex systems [173] and it was found a
linear correlation between the value of β  and the
hydrophobicity of both the ligand and the receptor binding
site. In effect, larger values of β were found in the presence
of a higher number of hydrophobic groups buried after
binding. Within the constraints and considerations
mentioned above, LIE is a useful method for estimating
absolute binding free energies for protein-ligand systems and
it does have the advantage of being somewhat
computationally more efficient than the FEP and TI method.
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Methods Based on Molecular Mechanics/Poisson-
Boltzmann Surface Area

A hybrid method termed MM/PBSA (Molecular
Mechanics/Poisson-Boltzmann Surface Area) combining
molecular mechanics and continuum solvent calculations has
recently been developed to analyze the free energies of
binding and relative free energies of different conformations
[52,174-179]. The MM/PBSA method extracts solute
conformations or snapshots from a MD trajectory carried out
with explicit solvent, typically a periodic box with water
and counter-ions. For each snapshot, solvent molecules are
removed to obtain the molecular mechanics energy of the
solute, using the same molecular mechanics potential as in
the simulation, but in the absence of cut-offs in order to
evaluate the non-bonded interactions. The binding free
energy is calculated as:

∆Gb=∆GMM+∆GLP
solv-∆GL

solv-∆GP
solv-T∆S (11)

 where ∆Gb is the binding free energy in water, ∆GLP
solv,

∆GL
solv and ∆GP

solv represent the solvation free energies for
the complex, the ligand, and the protein, respectively, and
- T∆S is the conformational entropy contribution to the
binding, usually estimated by quasi-harmonic or normal-
mode analysis of the MD trajectory. ∆GMM represents the
interaction energy between the ligand and the protein and it
is calculated from molecular mechanics interaction energies,
resulting from the sum of electrostatic and van der Waals
contributions:

∆GMM = ∆Gel
int + ∆Gvdw

int (12)

where ∆Gel
int and ∆Gvdw

int are electrostatic and van der
Waals interaction energies, respectively. The free energy of
solvation, ∆Gsolv, is the sum of electrostatic and non-polar
contributions:

∆Gsolv = ∆Gel
solv + ∆Gnonpolar

solv (13)

where the electrostatic solvation term, ∆Gel
solv, is calculated

with the Poisson-Boltzmann (PB) approach, computed in a
continuum solvent using a finite difference Poisson-
Boltzmann model [138,180,181]. The nonpolar solvation
term, ∆Gnonpolar

solv, can be derived from the solvent-
accessible surface area.

The ensemble of structures for the uncomplexed reactants
can be generated either by running separate MD simulations
of the free species or by using the trajectory of the complex
and then removing the atoms of the protein and the ligand.
The MM energies and solvation free energies are computed
for each snapshot of the solute and then averaged to compute
the difference in free energies. The free energy difference can
be computed to obtain the absolute binding or the relative
binding for different mutants. Kuhn and Kollmann applied
the MM/PBSA method to study biotin and its derivatives
binding with avidin/streptavidin, obtaining relative binding
free energies in very good agreement with experimental
values. Then, comparing MM/PBSA and LIE methods in
calculating binding free energies for diverse avidin and
streptavidin ligands [177], their calculations could reproduce
experimental ∆Gbind with better correlation coefficient (r2 =
0.92) than the results from the LIE method (r2 = 0.55) with
fixed parameters (α = 0.5 and β = 1).

MM/PBSA combines an explicit molecular mechanical
model for the solute with a continuum method for the
solvation free energy. This method is more efficient than
traditional free energy methods, even if less accurate. Its
peculiarity is the applicability to systems which differ
substantially in structure. Even though MM/PBSA is fast
relative to conventional free energy perturbation methods,
further reductions of the computational effort per ligand can
be made. Two approaches that can enable MM/PBSA to
efficiently rank a large set of ligands are: i) replacing the PB
continuum calculation – one of the more time consuming
steps in the MM/PBSA approach - with a Generalized Born
(GB) solvent model [143] for the calculation of polar
interaction energies, and ii) instead of calculating individual
trajectories for each ligand, design a simulation in which all
the ligands simultaneously interact with the protein [177].

Summary

FEP and TI are the most rigorous methods in calculating
free energies, but suffer several limitations. The LIE method
allows calculation of absolute binding free energies and can
be used to study specific complex systems by applying
suitable empirical parameters. MD simulations can be
accelerated by replacing explicit water molecules with a
solvent continuum, as in the case of MM/PBSA, thus
enabling direct calculation of binding free energies [52].

KNOWLEDGE-BASED POTENTIALS

A second evolving category of methods that use
empirical and knowledge-based scoring functions for binding
affinity estimation is becoming increasingly useful for rapid
docking and virtual screening of potential ligands.
Knowledge-based potentials, also known as potentials of
mean force (PMF) or structure-derived potentials, have only
recently been developed in order to achieve the goal of
obtaining rapid prediction of binding affinities between
ligands and receptors of known 3D structure [50]. They have
been applied to the detection of errors in protein structures,
the threading of proteins, fold recognition and the ab initio
prediction of protein structure [182]. The basic assumption
of this approach is that experimentally derived molecular
structures contain a large amount of information on physical
properties of protein-ligand interactions. Consequently,
statistical analysis applied on a sufficiently representative
sample of all interactions should be able to reveal rules and
principles governing the stability of complexes. Practically,
PMF are derived by calculating experimentally observed
frequencies of non-bonded pairs of atoms in sets of training
complexes. Because the native structure that corresponds to
the lowest energy state at equilibrium can be described by
energy functions of intra- and intermolecular atomic pair
interactions [182], the starting assumption is that atoms
interact in a ligand-protein complex as in the gas phase, at
temperature T. Under these conditions, the interaction free
energy is calculated by the equilibrium pairwise density
between two atom types at a distance r  by using the
Boltzmann equation. Probably the most interesting
characteristic of knowledge-based potentials is the fact that
they incorporate all forces acting between two atom pairs,
and, moreover, they also contain to some extent the
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influence of the surrounding medium. This latter point is
very important, because having a function that is capable of
rapidly estimating reliable solvation free energy has become
an increasingly important goal [142].

Solvent-residue potentials can be explicitly determined
by assuming desolvation of residues prior to their
association as a reference state for a protein-ligand complex
[183]. The most serious problem with these approaches is
that protein structures derived from X-ray and NMR studies
are not representative of amino acids in the gas phase, and,
thus, several approximations are made. The most significant
approximation is that each amino acid pair in the system is
assumed to be independent of all other pairs, which is an
obvious fault because residues in proteins interact with each
other across secondary, tertiary and quaternary structural
features and are also covalently linked with each other in
specific sequences. The principal weakness of these studies
is that knowledge-based potentials depend on chain length
and composition, and they may be not able to quantitatively
reflect the true energy that causes amino acid pairing in
proteins, even if they often correctly rank the relative
strengths of inter-residue interactions [184]. However,
despite these limitations and the controversial relationship
between knowledge-based potential scoring functions and
free energy [185], several studies have been carried out to
correlate free energies of binding estimated using PMF
methods and experimental binding affinities for different sets
of protein-ligand complexes. The results obtained by these
approaches seem to be of the same or even better quality
than those obtained by other more rigorous approaches [50].
We review these studies here with particular attention to the
methods used in treating the solvent.

The first knowledge-based approach to estimate binding
affinities from a data set of proteins was made by Verkhivker
et al. [186]. A distance-dependent knowledge-based pairs
potential was derived from a data set of 30 HIV-1, -2, and
SIV-protease-inhibitors complexes by defining 12 atom
types. A comprehensive thermodynamic analysis was
performed including: i) an investigation of the balance
between hydrophobic and H-bond interactions, ii) the
energetic factors that regulate desolvation of polar groups in
the active site, and iii) the validity of enthalpy/entropy
compensation effects. The starting point was a simplified
model of the complex, in which ligand-solvent and ligand-
protein interfaces were analyzed separately. The ligand-
solvent interface of the complex was considered as the
portion of the total ligand surface covered by solvent, and
the ligand-protein interface was considered as the ligand
surface covered by a protein environment. To evaluate ligand
and protein desolvation contributions to the binding free
energies, an empirical solvation scale was used in which the
contributions of non-polar and polar components were
separated. The atomic solvation parameters for vacuum-water
transfer were determined as mean values of atomic solvation
parameters previously obtained [180,187].

To take into account desolvation contributions of non-
polar and polar groups, the ligand-solvent interface of the
complex was considered as that portion of the total ligand
surface covered by solvent, including a solvation mean field
potential that measures the propensity for specific ligand
atom types to be covered by a protein environment.

Moreover, to evaluate ligand and protein desolvation
contributions to the binding free energy, an empirical
solvation scale was added and the contributions of non-polar
and polar components were separated. The atomic solvation
parameters were determined as mean values of atomic
solvation parameters [180,187]. Finally, entropy loss arising
from favorable interaction of discrete water molecules located
in the active site in fixed positions was taken into account
by a mean fixed value [186]. The results of these free energy
calculations as compared with experimental binding
affinities were quite encouraging, since not only the
agreement of the estimated affinities of the complexes with
observed affinities was good, but also significant differences
in interaction energies of different inhibitors across subsites
were explained. In particular, it was found that the most
important contribution to the overall binding energy comes
from hydrophobic interactions as a result of the entropic
contribution of desolvation of hydrophobic groups at the
ligand-protein interface. Ligand-specific interactions
contribute to the total energy, thus justifying binding energy
differences between two inhibitor molecules. Desolvation of
polar groups contributes a normally large and unfavorable
component. Finally, it is important to note that the
crystallographic complexes used in the analysis included
crystallographically-located water molecules at the ligand-
protein interface. Simulations [186] show that an
unfavorable entropic contribution to the total binding energy
is due to "freezing" water in the active site, thus contributing
to the loss of translational and rotational entropy of the
system. The weakness of the PMF approach in this study is
that no reasonable estimation of absolute binding affinity is
possible, and that the starting data set is limited to a single
class of protein-ligand complexes, limiting the
generalization of the method to other complexes.

Similar, but more general, approaches were developed
almost simultaneously by Muegge and Martin [188] and
Mitchell and colleagues [189,190]. Both of these groups
describe knowledge-based potentials extracted from PDB
crystallographic structures by analyzing large numbers of
complexes. In the former investigation, the PMF was
calculated on 697 complexes, whereas the latter two
"generations" of the PMF, called BLEEP-1 and 2, were
calculated on 351 and 188 PDB entries, respectively, in
order to create general, reliable and fast scoring functions.
Moreover, both methods used more atom type definitions
for proteins and ligands (16 protein and 34 ligand atom
types [188], and 2 hydrogen, 38 non-metal and 18 metal
atom types [190]). With this enhancement it is possible to
more precisely model a wider variety of interactions. Both
approaches are also based on a calculation of distance
distribution of specific atom type interactions and implicitly
consider entropic contributions to binding free energy
inasmuch they are encoded within the crystallographic
structures on which the PMF models are based. Additional
terms added to include rotational and/or translational entropy
contributions were not seen to improve the resulting
correlation and, thus, were not adopted in the final
expression of PMF [188]. With respect to water interactions,
these two implementations are designed differently. Muegge
and Martin’s approach [188] incorporates solvation entropy
into the PMF expression by evaluating the "degree of ligand
penetration" into a cavity of the protein and using it as an
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implicit recognition of solvation effects. A large cutoff (>12
Å) for atom pair interactions was implemented in PMF
calculations in order to take into account the presence or
absence of protein atoms around the ligand. Hydrogen atoms
were omitted since they are not present in PDB structures,
and water was not treated explicitly. The dependence of the
resulting score on the interaction with discrete water
molecules considered as a part of the protein was evaluated
in a few cases and was found to be negligible. A different
approach was adopted by Mitchell et al. [190]. Two
"generations" of their knowledge-based potential were
implemented within BLEEP-2. It included explicit
interactions of protein and ligand with crystallographically
detected water molecules and also incorporated the effect of
water at the interfaces between bulk solvent and protein, and
between solvent and the ligand surface. The first hydration
shell of water around the complex was added with the
program AQUARIUS 2 [104,191] in such a way that atoms
at the surface of the protein were considered to interact with
water molecules. Protein-water, ligand-water and water-water
interactions were then used, in addition to ligand-protein
interactions, to derive distance pair potentials. In addition,
with BLEEP-2, an optional calculation was attempted to
determine solvent-inclusive interaction energies. To add the
explicit contribution of the bulk medium the BLEEP-2
algorithm includes terms to estimate changes in the solvent-
solvent energy. However, because the direct calculation of
energies on all water molecules was too expensive in terms
of CPU time, an approximation was used that considered a
hydrogen bond between two solvent molecules to be formed
for every two hydrogen bonds lost between protein or ligand
and solvent. By calculating the number of hydrogen bonds
formed and by multiplying it with the hydrogen bond water-
water potential, it was possible to estimate explicitly
energies of solvation for a chosen interaction sphere.

Results from both studies are quite encouraging, despite
some surprising issues. Muegge and Martin [188] tested
their PMF against several sets of ligand-protein complexes
and found that their score is especially effective in ranking
affinities of similar molecules for the same protein target,
although not capable of giving a reliable estimate of the
binding free energy. Their scoring function is general, since
a test on 77 different complexes showed a linear correlation
with an R2 = 0.64 and another test with a protein and 33
inhibitors gave a result with R2 = 0.74. The most
encouraging result was the linear relationship between
estimated and experimental binding affinities for a test of 16
serine protease-inhibitor complexes, with an R2 = 0.92.
Moreover, by comparing the PMF score with other scoring
functions, the scores were found to be reliable in more
diverse test sets. The evaluation of ligand volume in
perturbing the PMF score was tested and found significant,
especially for those complexes where the relationships
between PMF score and binding affinity were not as well
defined [192]. Results from Mitchell and collegues
[189,190] appeared to be promising. They evaluated their
PMF on a test set of 90 complexes extracted from the PDB
and not part of the learning set used to derive the
knowledge-based potential. The correlation coefficient
between experimental binding affinities and the BLEEP
score show that the second generation of PMF (BLEEP-2),
which implicitly includes solvent effects, performs better

than BLEEP-1 that does not contain solvent information.
However, the calculations with BLEEP-2 and the addition of
explicit solvent effects in a sphere of water molecules of 8 Å
radius gave a worse result (R2 = 0.74 without explicit
solvent, R2 = 0.63 with explicit solvent). The same effect
was also found in another test set of nine serine protease-
inhibitor complexes (R2 = 0.71 without explicit solvent, R2

= 0.54 with explicit solvent). The suggested probable cause
is that approximations included in the solvation model
calculation lead to an accumulation of errors that
overwhelms the good correlation of the PMF itself.
Therefore, the problem of an explicit water-water energy term
cannot be considered solved using this approach. Finally,
BLEEP-2 does not allow one to directly calculate
experimental binding affinities because the absolute
magnitude of the "energies" predicted is significantly
different from the experimental values.

Another PMF, named DrugScore, was derived by
calculating distance-dependent pair potentials retrieved from
1376 ligand-protein complexes [193]. In this work, the
distance-dependent PMF was associated with a solvent-
accessible surface-dependent singlet potential, in order to
take into account the entropy-dependent solvent
contribution. The first term is parameterized to describe
specific short-range distances, whereas the second term
calculates solvent-accessible surface regions of both protein
and solvent that become buried after association. This
approach acknowledges the fact that binding between ligand
and protein occurs in an aqueous environment, and it is
necessary to consider the entropic effect caused by the release
of solvent molecules from the binding cavity and the
reorganization of surrounding solvent molecules after ligand
binding. The resulting PMF reflects the contributions
arising from differences in the solvent–accessible surface for
each atom pair in a fully solvated state, thus avoiding the
average of this function over all atom types. Conformation
of both proteins and ligands free in solution were directly
derived from the X-ray crystallographic complexes and
assumed to be identical. The solvent-accessible surface was
calculated by adapting an algorithm previously developed
[194]. The implicit description of solute/solvent interactions
and solvent entropic effects along with involved enthalpic
contributions resulting from interatomic forces is
incorporated in the formalism to derive the PMF. DrugScore
software was tested to evaluate its reliability in identifying
near-native protein-ligand binding motifs out of a set of
different complex geometries and its reliability to rank
affinities for ligands that are closely to crystallographic
geometry. Two sets of 91 and 68 protein-ligand complexes
were used. The results with DrugScore are satisfactory in
discriminating between "well-docked" binding modes. It was
found that scoring values obtained by DrugScore for protein-
ligand complexes can be scaled to experimentally determined
pKi values [195]. Recently, DrugScore was implemented in
the AutoDock Lamarckian genetic algorithm [123] in order
to compare its reliability with the AutoDock scoring
function in searching for favorable ligand binding modes,
and found to be of comparable quality [196]. Finally,
DrugScore was used in a new approach to adopt knowledge-
based potentials specifically for one protein by considering
ligand-based information in a CoMFA-type approach [197].
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Another knowledge-based potential of mean force was
developed by Wallqvist and colleagues [198] in a slightly
different way from those previously presented. A systematic
analysis of atomic interactions between adjacent buried
surfaces within a binding interface was carried out and the
parameters for this PMF were extracted from contact
frequencies between atomic surfaces for each member of the
complex. In this case, the interactions between aminoacids
are assumed to be short-ranged [184] and are approximated
using a contact potential. The atom-based statistical
preferences are then produced by normalizing the results with
the product of buried surfaces of individual atoms. The
underlying approach assumes that several thermodynamic
quantities exhibit a strong correlation with solvent-exposed
surfaces, as found in previous studies [199-201], and solvent
exposure has proven to be a highly effective way of
developing an understanding of empirical observations.
Therefore, the free energy change of desolvating the
appropriate region of a bound enzyme-inhibitor complex and
the free energy change for association of these surfaces are
assumed to be proportional to the jointly buried surface
areas. In this way, it is possible to calculate atom-atom
binding coefficients and to interpret in terms of
favorable/unfavorable processes the release of water and
subsequent association between two atom types. As an
example, the binding parameter for a Caliph-C al iph
association is calculated to be 23 cal mol-1 per Å2. This
means that removal of these hydrophobic surfaces from
solvent exposure is energetically favored. This PMF was
applied to the analysis of ten HIV-1 protease inhibitors. The
results suggest that these complexes are characterized by a
small principal and common set of protein-ligand contacts
that contribute most to the total binding energy, and by a set
of more variable and specific interactions that can further
stabilize the complexes. The correspondence between
measured and predicted binding energy for these complexes
is also good. In addition, the identification of a common
binding motif may allow for the improved design of
inhibitors by taking into account more relevant features of
binding.

Another interesting PMF method, called SMoG, was
developed using contact potentials [202]. A simplified
description of interactions between ligand and protein in a
complex was obtained, producing a "coarse-grained"
potential function, characterized by atomic contacts
considered either "on" (i.e., 1) or "off" (i.e., 0) depending on
whether atom pairs distances are within a cutoff radius
distance of 5 Å. The core assumption is that changes in
solvation entropy resulting from complex formation are
influenced by loss or gain of solvent order that is related to
the surface potential of the complex atoms exposed to
solvent. The probability of observing a specific contact
includes the effect of an average over the contribution of
solvation entropy to the global free energy. The formation of
each contact also involves energetic costs for desolvation.
These effects are taken into account by the choice of a
reference state in which formation of contacts more
frequently observed in the database is favored, and formation
of contacts rarely observed is penalized. Tests and
applications of SMoG were divided in two subsets: when
binding of a ligand occurs at the protein surface, and when a
ligand is deeply buried in a pocket. In fact, significantly

different interactions are present in both situations, due to
the different extent of solvent exposure, and, consequently,
different contributions are observed in resulting
solvation/desolvation terms. The surface set included 17
complexes, and the non-surface set 109 complexes, all taken
from the PDB. Results were evaluated in three different
ways. First, the authors tested the ability of SMoG to
discriminate the native ligand geometry from alternative
conformations generated by docking programs. Second, it
was evaluated whether there was a correlation with the
CHARMM interaction energy score. No correlation was
found, even though one encouraging result was that the
complexes scoring as the best candidates for CHARMM
were also described as good candidates by SMoG. The loss
of correlation was attributed to the fact that CHARMM
estimates only vacuum enthalpy and does not take into
account entropic factors like solvent effects. This indicates
again the importance of a global evaluation of all factors
affecting binding free energy. Finally, for the third
evaluation, the correlation with binding free energy was
tested. To do this, SMoG was applied to three protein-
ligand systems: purine-nucleoside phosphorylase, SH3
Domain and HIV-1 protease. Initially, several negative
results were observed, but these were explained on the
grounds that the experimental IC50 or Ki of the complexes in
the datasets were tested at varying concentrations of
phosphate ions, and several of these molecules had been
shown to have high sensitivity to phosphate concentration.
By excluding these molecules from the data set, a better
correlation was reported.

Summary

Knowledge-based potentials are promising methods for
correlation of estimated binding free energy with
experimental data, despite their occasionally unclear physical
meaning. They appear as reliable as other scoring functions
in correlating estimated and experimental binding affinities
Since the starting point for these methods takes into account
the influence of several factors ignored by traditional
regression methods, knowledge-based methods can include,
to some extent, entropic factors, that are in general not
considered or underestimated with other methods. The
solvation effect is analysed and incorporated in several ways
in the calculations; however, the explicit solvent effect has
not yet been adequately simulated. The method developed
by Verkhivker et al. shows a comprehensive thermodynamic
analysis but its parameterization is strictly linked to a
limited starting data set. Wallqvist et al created a PMF in
which contact frequencies between atomic surfaces are the
starting point for parameterization, but again the training set
is numerically limited, although more general than that of
the previous PMF. BLEEP-1 and 2 are based on a robust
training data set and they are the first to implicitly include
solvation entropy, but a quite surprising result is the loss of
predictivity resulting by the explicit inclusion of solvent
effects. DrugScore is probably the most general PMF in
parameterization and its score can be related to
experimentally determined pKi values. Finally, SMoG was
developed using contact potentials that describe the
interactions in a ligand-protein complex by meaning of a
"coarse-grained" potential function. Analysis of correlation
with binding free energy tested on three protein-ligand
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systems was found quite satisfactory. With the increasing
availability of structural information and binding data
between protein-ligand complexes, further advances in
parameterization could be achieved and water treatment
improved.

EMPIRICAL FORCE FIELDS

In order to obtain fast scoring for thousands of
compounds in the search for a lead candidate, several
empirical force fields have been developed. Within these
approaches, the free energy of binding is expressed as the
sum of partial free energy terms corrected by a weighing
coefficient ∆Gi:

∆Gbinding= Σ ∆Gi fi (rl, rp) (15)

where fi is a function of the ligand and protein coordinates rl
and rp, respectively [203]. Each term corresponds to defined
contributions to the free energy accounting for electrostatic,
ionic, hydrophobic interactions, solvation, flexibility,
rotatable bonds, etc. The coefficients are obtained by fitting
the experimental data derived from a training set of ligand-
protein complexes for which binding affinities and three-
dimensional structures are available. SCORE1 is a four-term
function developed by Böhm using a training set of 45
complexes, and implemented in the popular docking
software LUDI [194]. The standard deviation for SCORE1
over the 45 complexes was 1.9 kcal mol-1. In a more recent
version, SCORE2, water molecules in the binding site were
explicitly taken into account to obtain some estimation of
desolvation using a combination of energy minimization and
molecular dynamics simulation [204]. The training set
included 82 complexes with seven adjustable parameters and
the standard deviation was 1.7 kcal mol-1. Several other
empirical functions have also been developed. One of them,
VALIDATE, combines empirical functions and force fields
and makes use of a training set of 51 complexes with 12
terms [205] obtaining a standard deviation of 1.6 kcal mol-1.
A four-term function was developed with the coefficients
derived by a training set of 82 complexes, leading to a cross-
validated error of 2.1 kcal mol-1 [206]. Further development
of this function has made use of Bayesian statistics and a
hydrogen bond term that includes water-mediated contacts
[207]. The Jain scoring function contains 17 fitting
parameters including terms for entropic and solvation effects
[208]. The standard error in the prediction of affinities with
the Jain function is about 1.4 kcal mol-1. Another method
called SCORE uses a function that includes a term for
desolvation effects. The SCORE training set was based on
170 protein-ligand complexes and the cross-validated
deviation was 1.5 kcal mol-1 [209]. Other empirical
functions have been developed using a specific protein as a
training set [210-214], thus limiting their general
applicability.

Summary

The main advantage of empirical force fields for the
determination of free energy of binding is the reduced time
required for the classification of compounds. However, in
most cases the solvent is only implicitly taken into account
and the applicability to search lead compounds for a defined

target is strongly dependent of the training set. Another
source of approximation derives from the separation of the
binding free energy in different contributions, an assumption
not generally thermodynamically acceptable (vide supra)
[125].

THE "NATURAL" FORCE FIELD

As shown above, understanding and computationally
analyzing macromolecule-ligand interactions with molecular
mechanics is somewhat hampered by the lack of well-
conditioned interaction terms in the force fields beyond the
(Coulombic) electrostatic and the (Lennard-Jones) London
forces terms. The bulk of the terms in force fields are
designed to reliably describe intramolecular (bond path)
structure, i.e., bond lengths, angles, torsions, etc. All force
fields perform fantastically well at this task in the vast
proportion of cases. Indeed, it is only an increasingly small
number of cases where quantum mechanics must be invoked
to accurately model a small molecule structure. However, the
intermolecular (through-space) interaction terms in most
force fields are not as well developed due to a number of
complexities. The two key intermolecular equations used in
virtually all implementations of molecular mechanics,
Coulomb’s Law and the Lennard-Jones equation, are not
particularly well suited to the complex biological
environment. First, the fact that there is not a single, simple
dielectric constant is a major problem. While there are
accepted dielectric values and applied modification schemes,
e.g. distance dependence, these are not easy to calibrate with
experiment. Second, it must be remembered that the
Lennard-Jones equation is simply the mathematical
representation of the London force behavior; it is not a
physical law itself. Ascribing other, more emergent, effects
such as the hydrophobic effect to this simple mathematical
function is problematic at best. Third, and most
importantly, biological intermolecular interactions are
concerted, that is, they arise from a unified attraction
between two species, and are a complex and unknowable
mix of multiple effects, including electrostatic forces,
London forces, hydrophobic forces, as well as
solvation/desolvation energies and the effect of entropy. Dill
[125] states that there is no reason to expect that summing
these disparate terms of free energy to derive an overall free
energy of interaction for a system is valid.

A different approach is to exploit available free energy
measurements as the basis of an interaction model. While
there is a large set of ∆G values derived from experimental
measurements of binding ligands to protein, the independent
variables that might be used to rationalize this set are
extremely complex arising from specific molecular structure,
measurements conditions, and several features unique to each
complex. In addition, these measurements themselves carry a
relatively high degree of uncertainty. Another, more
accessible and equally biochemically relevant, set of free
energy data is the very large validated collection of LogP
data. P is the partition coefficient for water to solvent ligand
transfer, which is a thermodynamic free energy parameter.
Generally the solvent is 1-octanol, thus, LogPo/w. Because
of this parameter’s wide-spread applicability in QSAR and
other property predictions, LogPo/w data have been collected
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Fig. (3). (A) The molecule is in the LogP “shake flask” surrounded by water and 1-octanol (ovoids). Curved shapes represent
hydrophobic regions, filled circles are H-bond donors, unfilled circles are H-bond acceptors. Note that some water is present in the
octanol “layer”. B) In the protein “site” the molecule ligand makes similar interactions – hydrophobic regions interact with
hydrophobic pockets, polar regions of ligand are making hydrogen bonds with complementary functionalities of the site residues in
polar pockets. Hydrophobic-polar mismatches between the ligand and the site can represent the energetic cost of desolvation.

and archived by medicinal chemists for many years [215].
This archive includes virtually all types of biologically
important molecules and functional groups, and particularly
emphasizes molecules of interest in drug discovery and
design. The relevance of LogPo/w for the purpose we
envision, a computational free energy model, is summarized
in (Fig. (3 )). In effect, the water solvent is a model
environment for a "polar" pocket in a biomolecular
receptor/ligand binding site. Water possesses both hydrogen
bond donors and hydrogen bond acceptors. The 1-octanol
solvent is similarly a model environment for a
"hydrophobic" pocket. In effect, a small molecule targets a
specific macromolecular binding site for the same energetic
principles that it uses to partition between these two
solvents. The associated computational interaction model,
which is called HINT (for Hydropathic INTeractions), seeks
to exploit the interaction information implicit in LogPo/w as
the basis for describing and quantitating all interactions in
the biological environment [216-220]. The HINT model
describes a "natural" force field in that the totally empirical
energetic terms are defined by a real experiment that encodes
in LogPo/w all of the types of interactions including
Coulombic, hydrogen bond and hydrophobic expected
between two molecules in the biological environment. In
addition, and most importantly, HINT encodes a free energy
force field and thus includes entropy and
solvation/desolvation in addition to the other enthalpic
terms.

The interaction equation of HINT is as follows:

bij = ai Si aj Sj Tij rij + Rij (16)

where bij is the interaction score for the interaction of atoms
i and j, that are on different molecules in the case of a
ligand-protein binding calculation. ai and aj are the
hydrophobic atom constants for atoms i and j. The
hydrophobic atom constant is the contribution of that atom
to the total LogPo/w. Si and Sj are the solvent accessible
surface areas for the atoms. Tij is a discriminant function for
polar-polar interactions [217]. In most studies, rij, the
hydropathic dependent distance function, is the simple
exponential, e-r, where r is the distance between atom i and
j, and Rij, is an implementation of the Lennard-Jones
equation [217,219,221].

It has been shown previously that LogPo/w can be
directly related to the free energy (∆G) of molecule/solvent
partitioning and that since Σ ai = LogPo/w, each ai is a
partial free energy, δg [217]. In this model these ai
parameters encode the propensity for (hydropathic)
interaction and when they are correlated, as in the product ai
aj, the result is that bij is proportional to δg for a specific
atom-atom interaction and that the double sum Σ Σbij over
all i and j is similarly related to ∆ G for the entire
intermolecular interaction [217]. This report is not meant to
be a review of the many methods of predicting LogPo/w
from structure and connectivity. There are many such papers
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in the literature [222-225]. We will make two comments: 1)
Because of its intimate relation to the Pomona MedChem
data base, the method of Leo, as encoded in CLOG-P [226],
deals most comprehensively with the types of molecules
encountered in typical drug discovery scenarios and has
several features of major importance with respect to the
HINT model. Notably, the CLOG-P method deals rationally
with complex cases of multiple polar groups on molecules
(the "Polar Proximity Effect") and has a crucial factor for
intramolecular hydrogen bond formation. 2) Validation
studies of LogPo/w predictions typically ignore a very cogent
fact – arguably the most important feature of prediction for
drug design is how well the system works in relating
structures within a single family of compounds (i.e., the
project) and not how well the system works in predicting a
diverse set of test compounds. In this regard, nearly all of
the LogPo/w prediction methods perform very well. LogPo/w
predictions for the HINT model are made by an adaptation of
the CLOG-P method.

The HINT model has largely been validated through
comparisons between HINT score calculations and measured
free energies. A fairly large number of biomolecular systems
have been evaluated this way, including protein-protein
interactions in native and mutant hemoglobins [227,228],
intercalation of antibiotic anticancer drugs into DNA [229],
protein-sugar interactions in wheat germ agglutinin [230],
RNA-aminoglycoside interactions [231], docking, scoring
and drug design in HIV-1 reverse transcriptase [232,233] and
cyclin-dependent kinase [234], and a number of other
systems. A comprehensive free energy validation study was
performed on the HINT score in a collection of 53
structurally well-characterized protein-ligand complexes for
which accurate binding data was available [235] and,
recently, in a collection of 76 complexes [236].

Two of these studies are reviewed here. First, 23 mutant
hemoglobin tetramers were modeled from the starting native
hemoglobins in both the deoxygenated (T) state and the
oxygenated (R) state [228]. The free energies for dimer-dimer
association for these mutant proteins (∆G d→ t) were
calculated and correlated with experimental data with fair
success [237]. However, there are a significant number of
water molecules bridging the dimer-dimer interface, and
these contribute significantly to ∆Gd→ t. Each mutation
caused a unique perturbation to this field of water molecules.
To account for this effect the GRID program [97] with the
water probe was applied to region surrounding each mutation
site and the energetically viable water molecules were then
added to the models. Recalculation of ∆∆Gd→t for each case
yielded very robust correlations between the experimental
and calculated changes in free energy: r = 0.79, standard
error = 1.4 kcal mol-1 for deoxy hemoglobin mutants; r =
0.87, standard error = 0.8 kcal mol-1 (after the chemically
reasonable deletion of three outliers) for the oxy hemoglobin
mutants. As part of this work a conversion factor for
arbitrary HINT score units to free energy was invoked. This
factor was one kcal mol-1 is approximately equivalent to 515
HINT score units [228] .

The second study was an analysis of protein-ligand
binding through a large array of systems, ranging in
properties from very polar binding sites to very hydrophobic
binding sites. The available complex structures in the
Protein Data Bank were filtered for quality (X-ray

resolution), metals at active site (structures excluded), and
presence of water at active site (structures also excluded for
this study). The corresponding binding data were collected
from the literature and converted to free energies. Molecular
models for the resulting 53 complexes were built and
optimized in a number of ways that did not, in general,
affect heavy atom placement [235]. In particular hydrogen
bonds were optimized by rotation around R-XH bonds to
place the donor hydrogens more appropriately for interaction
with their acceptors (this procedure does not move any heavy
atoms). Also, a number of cases where protonation or
deprotonation of ionizable functional groups on the protein
and/or ligand were noted. These structures were then
modified appropriately. The HINT scores for the molecular
models optimized as described were then correlated with
measured free energies of binding to obtain a simple linear
equation: ∆G° = – 0.00195 HTOTAL - 5.543 (kcal mol-1),
where HTOTAL is the total HINT score for the protein-ligand
interaction. This interaction has r = 0.54 and standard error
= 2.6 kcal mol-1. The conversion factor between arbitrary
HINT score units and free energy is one kcal mol- 1

approximately equivalent to 513 HINT score units [235].
Within groups of ligands bound at the same protein the
standard errors were much tighter, approaching ± 1 kcal
mol-1.

Five themes have emerged from this and related work: 1)
There is a correlation between X-ray diffraction quality, i.e.,
resolution, and the ability of the models to predict accurate
free energy. The standard errors of our correlations improve
when more structures of intermediate resolution are excluded
from the analysis. 2) Molecular mechanics force fields are
not always completely appropriate for optimizing
biomolecular structure. Most notably, the hydrophobic effect
is penalized by Newtonian force fields because the partial
group charge of hydrophobic entities is generally positive
thus causing charge repulsion between them that is only
compensated by the London forces. 3) The genesis of most
entropy in biomolecular systems and the cause of the
hydrophobic effect is the exclusion of water from the
"unoccupied" active site. Water molecules still present at the
active site and bridging between the interacting species make
a significant energetic contribution and in a sense give some
energetic clues about the makeup of the pre-binding active
site. 4) The ionization state of protic functional groups in
the active site can not be generally assumed "pH neutral".
Each local environment, i.e., other functional groups, water
molecules, buffer ions, effectively influences pKa values.
However, protons are not static, and the "real" case is likely
to be a hybrid of several models. 5) Local minima in active
site model building with force field energy minimization can
be manifested in small but significant ways that can
alarmingly affect free energy estimates. It is not unusual for
an –OH on an amino acid residue to be arbitrarily oriented
away from its likely hydrogen bond partner and for it to be
"stuck" in a local minimum potential well. Similarly, water
molecules, even when present at an active site, can be poorly
oriented after energy minimization.

The first two of these themes are actually two parts of the
same issue. The most obvious consequence of lower
resolution crystallographic data is that more errors in atom
placement would be expected, and this would certainly be
manifested in computational predictions of binding free
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Fig. (4). Correlation between the experimental free energy of binding and HINT score units. The straight line through data points is
the best least-squares fit, carried out for 56 complexes with resolution < 2.5 Å, and at least 3 ligands for each protein (closed
diamonds), showing R = 0.85, R2 = 0.72 and SE = 1.8 kcal mol-1. For 76 protein-ligand complexes with resolution <3.2 Å (open and
closed diamonds), the fitting (not shown) gives R = 0.69, R2 = 0.48, SE = 2.4 kcal mol-1.

energy based on these data. However, there is another, more
subtle, consequence that also should be discussed. When
higher quality diffraction data is available for
crystallographic model refinement, the model building and
fitting of the electron density is driven more by the actual
data and less by the underlying molecular mechanics force
field. In other words, there is less ambiguity of atom
positioning and second order effects, such as hydrophobic-
hydrophobic attractions, are not penalized in refinement. In
contrast, with lower quality diffraction data, the electron
density envelopes are not as well defined, and force field
methods must be invoked to propel the refinement. While
we have not, as of yet, performed a detailed analysis of this
phenomenon, we have noted that we achieve much better
correlations between our predictions and measured free
energy when the data set excludes more lower resolution
structures. (Fig. (4)) is a modified version of a figure from
Cozzini et al. [235] that now includes more complexes and
has been segregated to indicate those with crystallographic
structures collected at < 2.5 Å for consideration in the
regression analysis [236]. The standard error for this
correlation is 1.8 kcal/mol and r = 0.85. A plausible
explanation may involve a number of factors, but we believe
that one of them will be the lack of any hydrophobic
interaction terms in the molecular mechanics force fields.
Unfavorable hydrophobic interactions arise from polar atoms
in close proximity to apolar atoms. These HINT interactions
can be interpreted as a desolvation penalty [218]. Also of
potential concern is that molecular mechanics force fields can
calculate certain of these interactions, e.g. between a
carboxylate oxygen and a methyl, as being favorable because
of the opposite sign of the partial charges on these atoms.
This may also be a contributing factor to our ability to

predict free energy with lower quality X-ray structures.
In most cases there is little information about the actual

binding event. We are normally relegated to examination of
the resulting, ligand-bound, structure with no information of
how it got there. In particular we know nothing about the
movement of water during ligation. Even when both
unligated and ligand-bound structures are available, we do
not know with certainty which water molecules were pushed
out by the ligand, and which ones were carried in with the
ligand. The third theme indicates that modeling water at the
active site, particularly in cases where the water bridges
between the ligand and receptor, is crucial for accurate free
energy predictions with our technology. Even though our
ligand-receptor data set [235] was filtered to remove cases
where water was presumably a large factor, there were several
cases where nearby water molecules appeared to be impacting
the models and distorting the free energy predictions. In the
section to follow, we present portions of an analysis of the
binding site in HIV-1 protease where the water molecule(s)
present and bridging between the protein and ligand are
critical to the system. Indeed, proteins, ligands and water
must be considered as systems. Each piece has a role to play
in the binding event.

We have been interested in the impact of functional
group ionization in the context of ligand binding for some
time. In fact, in one of the first applications of HINT
(unpublished results), an analysis of the HIV-1 enzyme
bound with the Abbott ligand A74704, we saw a strong
indication that one of the two active site aspartates must be
protonated for the structure to make sense. Recently we have
been quantitating this effect in a procedure we call
Computational Titration [238]. Basically the idea is that we
build a family of models for each protonation level, i.e., a
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Fig. (5). Structure of the active site of HIV-1 protease, complexed with CGP53820, a psudosymmetric inhibitor [244]. The conserved
water 301 and the semi-conserved water 313 and 313’ are hydrogen bonded with the ligand and protein residues.

proton may often be added to the system in multiple
locations – at ionizable amino acid residues and ligand
groups. The scores for all accessible models at each
protonation level are then averaged. A plot of these averages
as a function of protonation level indicates the optimum
protonation as a peak in average score. The key point here is
that modeling a protein-ligand interaction and attempting to
computationally predict free energy without careful
examination of the protonation state at the active site will be
likely inaccurate. It should also be noted that in many cases
the experimental binding was not necessarily measured at the
optimum pH, and that the X-ray crystals were not
necessarily grown at the same pH as the binding was
measured. These effects must also be factored into
predictions.

The problem of local minima in molecular mechanics
structure optimization is well known. For the purposes of
the HINT score algorithm, we have been particularly
interested in the very large effects on score arising from a
number of small structural perturbations involving only
hydrogen positions. When hydrogen atoms are added to
structurally determined atoms with the algorithms in Sybyl,
InsightII or any other modeling package they are added to
their parent heavy atoms with appropriate and consistent
geometries for the heavy atom. However, no accounting is
made of the through space interactions that hydrogen may be
involved with. Structure optimization of the hydrogen set
corrects the vast majority of the resultant van der Waals
clashes, etc., but in a number of cases, usually involving
–OH groups on serine, threonine, and tyrosine or on the

ligand, an R-XHn bond is rotated away from the expected
acceptor and what should have been a hydrogen bond is
scored as a much weaker interaction. This is only, as we
mentioned above, a manifestation of the local minima
problem, but it has a large impact on free energy predictions.
Similarly, water molecules are routinely trapped in local
minima, and their contribution to free energy predictions are
not exploited. Thus, in our model building we routinely
scan for, and manually correct by rotation about the R-XHn
bond, these situations.

The above five themes are driving our current research
and development of the HINT model. We are envisioning a
principle of "fixing the important bits" for free energy
prediction, and are in the process of computationally
automating "fixes" for these issues. For example, our code
now will scan the active site for ionizable residues, acids or
bases, and optimize for highest HINT score the protonation
state of these residues or functional groups. The code also
identifies and corrects the local minima described in the fifth
theme. Finally, we are automatically optimizing water
molecules at the active site and are identifying those that
would appear to contribute to free energy. We should
emphasize that the vast majority of these "fixes" are
crystallographically indistinct. That is, even after these
optimizations, the resulting models would still fit within
the original experimental electron density envelope. We are
also exploring how the HINT force field can interface with
crystallographic energy refinement to improve the quality of
poorer resolution structures.
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Table 1. Crystallographic Resolution, Binding Affinity and HINT Score in the Absence and Presence of the Contribution of
Water 301 for 23 HIV-1-Inhibitor Complexes

PDB Resolution (Å) ∆∆∆∆G° (Kcal/mol) HS_pla HS_pl+lwb

1HBV 2.30 -8.68 2042 2819

1AJV 2.00 -10.52 3916 3916

1SBG 2.30 -10.56 3037 4163

1AJX 2.00 -10.79 3357 3357

1G2K 1.95 -10.82 3525 3525

1HIH 2.20 -10.97 3210 4290

1HTF 2.20 -11.04 2641 3367

1G35 1.80 -11.06 4198 4198

1AAQ 2.50 -11.45 3416 4049

1HVL 1.80 -12.27 3416 4669

1HIV 2.00 -12.27 3660 4986

4PHV 2.10 -12.51 3932 4721

1HPV 1.90 -12.57 3080 4138

1HPS 2.30 -12.57 3124 3953

1DMP 2.00 -12.99 4988 4988

7HVP 2.40 -13.11 4311 5540

1HTG 2.00 -13.20 4226 5498

1HXB 2.30 -13.49 3135 4184

1HVI 1.80 -13.74 3734 4945

1HVK 1.80 -13.80 3935 4999

1HVJ 1.80 -14.25 3460 4663

1QBT 1.80 -14.44 5170 5170

1HXW 1.80 -14.71 3607 5061

a HS_pl is the HINT score for the protein-ligand interaction. bHS_pl+lw is the sum of the HINT score for the protein-ligand and ligand-water301 interactions.

HIV-1 PROTEASE, INHIBITORS, WATER AND
FREE ENERGY OF BINDING

HIV-1 protease belongs to aspartate protease family,
because the active site contains two aspartate residues that
play a key role in the catalytic hydrolysis of peptidic bonds
[239]. The protease is one of the three fundamental enzymes
of the retroviral HIV, the others being reverse transcriptase
and integrase, and is vital for the HIV replication cycle. For
this reason, HIV protease has been a target for the design of
enzyme inhibitors to be used as drugs in AIDS therapy since
its structure was first reported [240]. Also, because of its
therapeutic importance and the large volume of experimental
research into its structure, ligand binding and inhibitors
[241,242], HIV-1 has been the target of many computational
studies, including a number reviewed here. The enzyme is a
dimer formed by two identical polypeptide chains. The
dimer possesses a two-fold symmetry axis leading to a
single symmetric active site (Fig. (5)) containing residues

from both subunits [243]. Key features of HIV protease are:
a conserved water molecule, water 301, placed on the
symmetry axis and bridging the two subunits, and the
"catalytic" water 300, observed in the free form and
coordinated to Asp 25 and Asp125, one of these residues
being protonated and the other unprotonated. Water 301 is
hydrogen bonded to the N-amide of Ile50 and Ile150, and, in
the presence of specific peptidic inhibitors to two carbonyl
oxygens, as shown in the case represented in (Fig. (5))
[244]. These inhibitors were designed based on the shape of
the active site as modified by the presence of the conserved
water 301. Alternatively, a number of inhibitors were
designed to displace water 301 [93]. Examples of these are
cyclic urea compounds that place a carbonyl oxygen in the
position occupied by water 301, thus forming hydrogen
bonds with Ile50 and Ile150. In some, but not all,
complexes the crystallographic analysis of HIV-1 protease
detected two other water molecules, water 313 and water
313’ (Fig. (5)).
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Scheme 2. Chemical structure of the 23 HIV-1 protease inhibitors.

As part of our efforts to understand the role of water in
ligand binding, we are currently addressing the question of
the contribution of the crystallographically detected water
molecules to the free energy of binding of inhibitors to HIV-
1 protease. We selected 23 inhibitor-HIV-protease complexes
of known three-dimensional structure and binding affinity
(Table (1)). These inhibitors are characterized by different
chemical structures, peptidomimetic diols, and
hydroxyethylenic, cyclic ureidic and cyclic sulfonamide
derivatives (Scheme (2)). Their interaction with the active
site was evaluated by HINT either with or without the
inclusion of water 301 (Table (1)), following procedures
previously described [235]. When water 301 is not taken
into account, the total HINT score is equal to the HINT
score of the protein-ligand interaction (HP-L). When water
301 is taken into account, the total HINT score is equal to
H P-L + HL-W, where HL-W is the HINT score of the
interaction of the ligand with the conserved water. The
correlation between HINT score and ∆G° significantly
improves when the energetic balance includes the water-
ligand interaction, as shown in (Fig. (6)), the calculated
standard error being 1.3 and 1.0 kcal mol-1, in the absence
and presence of water, respectively. We further evaluated the
contribution to the binding free energy of the more mobile
waters 313 and 313’ on a subset of ligand-protease
complexes. When these water molecules were not observed
in the crystal structures of the complexes, the GRID software
[97] was used to place them. We should note that, as a
validation, GRID correctly located water 313 and 313’, as
well as 301, in the active sites of structures where these
water molecules had been crystallographically observed and
manually removed. The overall contribution of water 313
and 313’ to the total HINT score is much less than that of
water 301. The correlation between ∆G° and HINT scores
with and without water 313 and 313’ only slightly
improved. This analysis, extended to inhibitors of HIV-2
protease and endothiapepsin, confirmed the relevant
contribution of conserved water molecules to the free energy
of binding (unpublished results). The application of this
procedure to a more complete set of protein-ligand
complexes of three-dimensional structures with a comparable
quality will allow us to correlate the energetic contribution
of active site water molecules with different mobility to the
free energy of ligand binding.

CONCLUSIONS

The quantitative modeling of water in biological systems
is a surprisingly difficult problem. Understanding and
parsing the many roles that water plays to stabilize
biological molecules and complexes is a large part of the
problem. Second, while it is generally the foundation of
computational biomolecular modeling, crystallographic data
has a number of limitations that, at best, add complexity to
calculations in the biological milieu. Of particular interest
here, the presence and positions of water molecules are
highly dependent on the resolution of the crystallographic
data collection. Also, since hydrogen atoms are virtually
never located in X-ray analyses, the presence and description
of crucial structural features such as hydrogen bonds are
often more of a modeling result than an experimental result.
However, despite these constraints, a quantitative energetic
description of the recognition between ligand/drug and
biomacromolecule/protein remains a crucial and fundamental
goal for both medicinal chemists and biochemists. A wide
array of approaches and models have been developed, of
which a few also try to capture the elusive but essential
contribution of water molecules to the free energy of
binding. The key question is: how do these methods
perform in free energy prediction? The best results indicate
errors in the order of a few kcal mol-1, thus serving
relatively well for de novo drug design and in silico
screening of chemical libraries in the search of new leads.

The follow-up of the genomics-proteomics revolution
leads to many new challenges for the discovery of more
potent and efficient drugs. The design of drugs that interfere
with the protein-protein recognition supporting signal
transduction-mediated diseases is just one challenge [245].
Whereas structural characterization and physico-chemical
description of ligand-protein are in a reasonably advanced
state, the prediction of protein-protein and protein-DNA
complexes are still mostly inadequate. In these processes,
water molecules play a key and yet poorly understood role as
ordered water at the interface may also mediate inter-protein
signals, as shown in the case of dimeric hemoglobin [246].
Most, if not all, of the drug discovery computational
methods have been developed for the evaluation of the
interactions of small ligands in narrow and well-defined
active sites. How will they perform in quantitative
evaluation of the interaction between protein-protein



22    Current Medicinal Chemistry,  2004, Vol. 11, No. 10 Cozzini et al.

Fig. (6). Correlation between experimental free energy and HINT score units for 23 HIV-1 protease-lignand complexes with (open
circles) and without (closed triangles) the contribution of water 301. The straight line through data points is the bes least squares fit
with SE of 1.3 and 1.0 kcal mol-1, in the absence and presence of water 301, respectively.

complexes formed by recognition of extensive, widely
dispersed, and shallow active sites? In these cases, in the
absence of high resolution crystallographic data, the
application of reliable computational methods to validate
and/or create a set of water molecules may be a reasonable
first step. Several complexes have already been analyzed
using approaches that include the contribution of interface
water molecules. However, comprehensive and in depth
analyses have not yet been attempted. Certainly, the
functional and thermodynamic role of water molecules
trapped between partner proteins and proteins and nucleic
acids will be a major research emphasis in the near future.

ACKNOWLEDGEMENTS

We are grateful to Dr. Gene Lamm for careful reading the
manuscript and helpful discussion. A. M. gratefully
acknowledges the support of Italian Ministry of Instruction,
University and Research (Grants COFIN 2003 and
FIRB2003) and the National Institute for the Physics of
Matter.

ABBREVIATIONS

SASA = Solvent accessible surface area

MM = Molecular mechanics

MD = Molecular dynamics

MC = Monte Carlo

GB/SA = Generalized Born/surface area

FEP = Free energy perturbation

TI = Thermodynamic integration

LIE = Linear interaction energy

MM/ = Molecular mechanics/Poisson-Boltzmann
PBSA surface area

PMF = Potential of mean force
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