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A study of prey–predator relations for mammals
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Abstract

In this paper, we present a prey–predator nonlinear model for mammals, consisting of large- and small-size prey species with

group defence, in a partially protected habitat. If the prey size is small, then it is more prone to the predator at higher densities.

Conversely, large prey size at higher densities tend to develop group defence. Therefore, the predator will be attracted towards that

area where prey are less in number. A new physical constant has been introduced into the radiation-type condition on that part of

the boundary where interaction between prey and predator takes place. This constant allows us to efficiently model group defence

capabilities of the herds and its numerical values have to be determined for different pairs of prey–predator species from field

observations. A way of measuring the constants involved in the model is suggested. Numerical results are provided and thoroughly

discussed for a habitat of circular shape. The obtained results show that in the region away from the protected area, the density of

large-size prey species is higher than that of small-size prey species, a fact that is in accordance with observations.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a predator–prey environment, there are many
mathematical models in the literature on selective
predation, where the predator prefers to eat the prey
species according to age, size, weight, number, etc. A
predator prefers to catch a prey species that is most
abundant, when the prey species is relatively smaller in
size with little or insignificant defence capability with
respect to the predator species, such as small antelopes,
voles, dik-diks, and the predators are cruising (which
move to locate the prey species). Smaller species are
vulnerable to a greater range of predator species and are
less likely to defend themselves against, or to outrun,
predators. All small species avoid being detected by
predators. Smaller species live singly or in pairs and find
their resources within a defended territory. Because they
are small and vulnerable, they move and feed cautiously
and slowly and never move far from cover. The size of

the territory is presumably determined by the area that
a pair can defend and by the availability of suitable
food at the season of greatest scarcity. These species
characteristically remain in one vegetation type all
season.
Ruxton and Lima (1997) studied a predator–prey

model where prey species are divided into breeder and
suppressor classes. To avoid predation, it has been
suggested that certain small mammals suppress breeding
in response to strong predation pressure because non-
breeding individuals have a better chance of avoiding
predation than those in a reproductive stage. It has been
suggested that breeding suppression is an adaptive
mechanism of prey individuals to avoid predation
(Magnhagen, 1991) and, specifically, that this phenom-
enon could explain at least some properties of Fennos-
candian vole cycles (Yl .onen, 1994). Several recent
papers report that the presence of predators can induce
a marked reduction in reproduction in several boreal
mammals. Lima (1997) and Yl .onen (1994) argued that
predator-induced breeding suppression enhances survi-
val of non-reproductive females during high predation
and after which their reproduction efforts would be
more successful.
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Large prey species like wildebeests, zebras and
Thomson’s gazelles feed upon abundant, evenly dis-
persed, easily found food items. Food items of low
quality (natural leaves, stems) are much more abundant
than those of high quality within selected habitats and
so they form huge and cohesive groups. Large herd
formers are more likely dependent upon self-defence and
group defence, to avoid being killed by predators.
Group defence is a term used to describe a phenomenon
whereby predation is decreased or even prevented
altogether by the ability of the prey population to better
defend themselves when their number is large (see
Hamilton (1971) for more details). The predators do not
seek out areas with very large prey density (Schaller,
1972). Pairs of musk-oxen can be successfully attacked
by wolves, but groups are rarely attacked (Tener, 1965).
There are many examples of group defence (Yang and
Humphrey, 1975; May and Robinson, 1985; Homes and
Bethel, 1972). Herds remain well coordinated, even
under attack, and individuals may benefit from the
alertness and communication. Individuals tend to con-
form with their neighbour’s activities and many
hundreds, even thousands of wildebeests can coordinate
rapidly in response to an alarm. Large groups also
benefit from increased probability of detection of
predators. The hunting success of lions decline if the
group size of prey is large (Van Orsdol, 1984). Cheetahs
prefer to hunt single animals.
The mathematical models involving predator and

prey species interactions in which the predator feeds
more intensively on the more abundant species, i.e. prey
species is of small size with insignificant defence
capability have been generally studied. One can refer
to Holling (1961), Takahashi (1964), Murdoch and
Qaten (1975), Roughgarden and Feldman (1975),
Tansky (1976), Prajneshu and Holgate (1987), McNair
(1987) and Khan et al. (1994). Freedman and Wolk-
owicz (1986); Freedman and Quan (1988); Ruan and
Freedman (1991) have studied mathematical models for
a prey–predator system in which the prey population
exhibits group defence. Khan et al. (1998) have analysed
a switching model with two habitats and a predator
involving group defence.
In contrast to the usual prey–predator problems,

which usually consider a certain process in time, thus
leading to ordinary differential equations, the present
paper is concerned with the investigation of the
phenomenon of group defense in a certain type of
animal community. This basically requires the consid-
eration of a two-dimensional habitat and a certain
density function, u say, the values of which vary from
location to location, allowing for different concentra-
tions of the prey. This non-uniformity of the density is
described in mathematical terminology by the gradient
vector of the density function. Another useful ingredient
to be taken into consideration is the density flux vector

O; which must be related to the density function in the
same way as the heat flow vector is related to the
temperature as stated by the celebrated Fourier law for
heat conduction in its simplest form in classical
thermodynamics, O ¼ �K grad u; where K is a certain
physical constant. The most direct implication of such a
law is that the prey community, if left to itself without
any interference by external agents, would naturally
tend to redistribute itself uniformly over the land. Now,
this density flux vector in the steady state, in which we
are presently concerned, must satisfy a certain conserva-
tion law, expressed as divO ¼ 0: Such a law simply
means that the number of animals within a certain
closed boundary can change by a certain amount only
if there is transport of the same amount of animals
through the boundary. Combining the last two equa-
tions, one arrives at the conclusion that the density
function in the steady state satisfies Laplace’s equation
at every point of the habitat.
In this paper, we study a system having a predator

species interacting with prey species of small or large
sizes. We are assuming that the prey species herds are
living in a partially protected habitat with boundary of
arbitrary shape. Wildlife animals, specially small-size
prey species, remain concentrated near the region where
they get maximum protection from predator species.
Usually, these areas are covered by dense vegetation,
broken terrains or bounded by a river. We are assuming
that part of the boundary of the habitat is protected
from the predator attack. Predator species attack prey
species from the remaining part of the boundary. We
also make a number of other important assumptions.
The first of these is that predators adjacent to the
interactive part of the boundary have constant (unit)
density. The second assumption concerns the type of
interaction between prey and predator. In analogy to
heat conduction problems, this will be described by a
radiation-type condition imposed on that part of the
boundary through which hunting takes place. This law
is taken to be nonlinear in the form

@u

@n
¼ �qðu � 1Þ;

with a ‘‘predator–prey interaction coefficient’’ q depend-
ing on the prey density at the boundary according to a
parabolic law given by

q ¼ q0ð1� au2Þ;

where u denotes the prey density, n the direction of the
outward normal to the boundary of the habitat in its
interactive part and q0; a are certain numerical constants
depending on both the prey and the predator species. the
constant a accounts for the group defence mechanism.
These two constants have to be found from experi-
mental data. Later on, a way is suggested for measuring
them. For the sake of simplicity and in order to
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concentrate on the ‘‘prey–predator’’ relation, we also
assume that the ‘‘prey–predator’’ system is in a steady
state, by which we suppose that the births and the deaths
in the prey species occur equally in the habitat and that
the prey density is governed by Laplace’s equation.
We believe that this is the first time such a population

model has appeared in the literature. It allows us to
account for the phenomenon of group defence in the
prey species herds. It also efficiently explains that prey
species of small size tends to remain away from the
hunting area, while the prey species of large size (having
group defence capability) is also found in hunting areas.
As an illustration, a boundary-value problem for a

circular habitat has been solved in the case where half of
the boundary is protected from the predator attacks. An
approximate solution to the problem was found in the
form of a Poincar!e expansion in a small parameter, in
conjunction with the well-known Boundary Collocation
Method (Kolodziej and Kleiber, 1989). The method is
simple, straightforward and generally produces highly
accurate solutions. Moreover, it may be applied to other
geometries of the boundary and with different boundary
conditions. For complicated shapes, one may resort to a
numerical approach. Graphs are presented for the prey
density in the circular habitat, which show a comparison
between different large-size prey species, different small-
size prey species, as well as between large- and small-size
prey species. Cases with other boundary geometries, like
rectangular or elliptic boundaries, show comparable
behaviour of the solution.
Taking into account our choices of the characteristic

dimension of the habitat and the uniform predator
density outside it, the presented field equations and
boundary conditions are in dimensionless form.

2. Formulation of the problem

Consider a circle of unit radius and centre at O (Fig.
1) and let ðr; yÞ be polar coordinates in the plane of the

circle, with origin at O: Let uðr; yÞ be the steady-state
prey species density that lives inside the circular habitat.
The variations of this function of space are conditioned
by two factors: The reproduction and natural death,
which may be described by source and sink terms, and
the predation through the boundary, which is described
by a radiation-type condition. A balance between these
two factors may result in a steady-state prey distribution
of density in the habitat. Thus, one may assume that u

satisfies Laplace’s equation, on the basis of analogy with
similar steady-state problems of fluid flow or heat
conduction:

Du ¼ 0; ro1; �poypp: ð1Þ

By setting to zero the density of sources and sinks
inside the habitat, we have assumed that births and
natural deaths occur equally there. Several authors have
referred to the diffusion-type equation in solving prey–
predator problems (cf. Pettet et al., 2000; Avila-Vales
and Cantrell, 1997). For large time values, one may get
steady-state solutions governed by Laplace’s equation.
The boundary conditions prevailing at the boundary

of the circular habitat express two facts: (i) The
constancy of the prey species density on that half of
the boundary occupied by the river, where we have set
u ¼ 2: This condition implies that the reproduction and
natural death take place only at that safe part of the
boundary, which is in conformity with the discussion
presented in the Introduction. (ii) A condition of
interaction between the prey and the predator popula-
tions, the latter being taken to have a constant
concentration (equal to unity) at all points adjacent to
the second half of the circular boundary from the
exterior. It will also be assumed that the rate at which
the prey is attacked depends linearly on the difference of
prey and predator concentrations near the boundary
of the habitat. Thus, the boundary conditions may be
written as in Fig. 1. In the dimensionless formulation
adopted here, the unit value outside the habitat simply
means that the density of the predator has been taken as
a reference density:

@u

@r
¼ �qðu � 1Þ; r ¼ 1;�

p
2
oyo

p
2
; ð2Þ

u ¼ 2; r ¼ 1;
p
2
oyo

3p
2
: ð3Þ

Coefficient q is the analogue of the well-known Biot
constant in problems of heat conduction. For the
present model, it represents the rate at which the prey
species are attacked through half the boundary of the
circular habitat. The values of this parameter will
generally depend on the nature of the two interacting
species. In order to take into account the group defence
phenomenon of the prey species, it will now be
considered that q is a function of u according to the
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parabolic law

q ¼ q0ð1� au2Þ; ð4Þ

where q0 and a are certain constants to be determined
from observations. The constant q0 assumes positive
values, while a takes on positive values if the prey
species is of large size, and negative values otherwise.
The range of values 0oa51 corresponds to the old, sick
and those big prey species who have lost their herds. The
range ao0 corresponds to small prey species. Smaller
values of a within this range will correspond to weak or
breeding small-size prey species. Figs. 2 and 3 show the
variations of qðuÞ for two values of a:
We thus have at hand a nonlinear, mixed boundary-

value problem for the Laplace’s equation in a circular
region.

3. Method of solution

(see the appendix)

4. Numerical results

We have considered one value for the parameter
q0ðq0 ¼ 0:1Þ; three cases with large prey size ða ¼
0:01; 0:05; 0:1Þ and three other cases with small prey size
ða ¼ �0:01;�0:05;�0:1Þ: For each of these cases, we
discuss the obtained results and present the graph for
the steady-state distribution of the prey concentration
inside their circular habitat. A comparison is then
carried out between the different cases.
The points of the boundary at which the boundary

conditions are enforced are uniformly distributed along
the boundary, with

ym ¼
mp
M

; m ¼ 0; 1; 2;y;M � 1: ð5Þ

This usually secures the best results. However, one may
also attempt to improve the error in satisfying the
boundary conditions by using optimization techniques.
These are nonlinear and highly increase the cost of the
solution.
For each chosen value of N; we have obtained the

value for M which yields the minimal value for the error
e: Then we have found the critical value of N for the best
result. The graphs are drawn according to the optimal
values of N and M from the first two approximations
only. An investigation of the higher order approxima-
tions does not affect the results significantly. Fig. 4
shows a typical curve for the error distribution ERðyÞ
obtained for a ¼ 0:05 (large prey species), N ¼ 92;M ¼
150: One sees that eE0:392� 10�3; which seems to be a
sufficiently good accuracy in satisfying the boundary
conditions. Other cases show the same level of accuracy.

Figs. 5–13 show the corresponding distributions of
function u at different distances from the habitat centre
ðr ¼ 1:0; 0:9; 0:6Þ for 0pypp: Here, we have compared
the densities of large prey sizes, of small prey sizes, as
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Fig. 2. Function q=q0 for a ¼ 0:1 (large prey size).

Fig. 3. Function q=q0 for a ¼ �0:1 (small prey size).

Fig. 4. Minimal error for N ¼ 92;M ¼ 150:

Fig. 5. uð1:0; yÞ for large size prey.
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well as between large and small prey sizes. The effect of
group defence is most efficient in the vicinity of that
portion of the boundary through which hunting takes
place. This mechanism clearly enhances the prey density.

As one moves towards the safer area, the densities tend
to be the same. As the centre of the habitat is
approached, the densities tend to be more uniformly
distributed.
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Fig. 6. uð0:9; yÞ for large-size prey.

Fig. 7. uð0:6; yÞ for large-size prey.

Fig. 8. uð1:0; yÞ for small-size prey.

Fig. 9. uð0:9; yÞ for small-size prey.

Fig. 10. uð0:6; yÞ for small-size prey.

Fig. 11. uð1:0; yÞ for large- and small-size prey.

Fig. 12. uð0:9; yÞ for large- and small-size prey.

Fig. 13. uð0:6; yÞ for large- and small-size prey.
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Of particular interest is Fig. 14, comparing densities
of large size prey with low group defence capabilities
ða ¼ 0:01Þ and small prey size ða ¼ �0:01Þ: Here, the
densities of both species near the boundary (and hence
everywhere) become closer to each other, the difference
tending to vanish as a-70: This means that large size
prey species having no group defence capability behaves
as small size prey species and their densities away from
the protected area will almost be the same. Hence, the
size of the prey species becomes immaterial.

5. Discussion and conclusions

We have studied a prey–predator system, consisting
of prey species of mammals of both large and small
sizes. The predator prefers to catch the prey species that
is most abundant. Hence, instead of choosing indivi-
duals at random, a predator feeds preferentially on the
most numerous prey species. This was often found to be
the case where the prey species is relatively small in size
with little or insignificant defence capability with respect
to the predator species. These small prey species live in a
less cohesive and coordinated feeding groups. Certain
small mammals suppress breeding in response to strong
predation pressure because non-reproductive females
experience enhanced survival during high predation
than in a reproductive state. Prey species of large sizes
have the advantage of group defence but it will be
effective when the population of prey species is large.
They are rarely attacked by the predator when they are
in large numbers.
The aim of the present work is to model this

phenomenon of group defence. For this, we introduced
a nonlinear relation that regulates the rate of predation
at the boundary of the prey habitat. This law is
analogous to the well-known radiation condition in
problems of heat conduction, but with interaction
constant depending on the density of the prey species
at the boundary of their habitat. The two constants
appearing in this law could be measured experimentally
from two sets of measurements for the same given types
of prey species and predator species. For this, one has

only to evaluate the prey densities at two nearby
locations, one of them at the boundary of the habitat
and the other in its interior, in such a way that the line
joining the two positions is perpendicular to the
boundary line. This would estimate the normal rate of
change of the density at the boundary of the habitat.
In order to focus on the phenomenon under

consideration, we restricted our analysis to the steady-
state case and to a circular habitat. One half boundary
of the habitat is bounded by a river or covered by high
vegetation, broken terrains, which provide a secure
environment for hiding, reproduction and maximum
protection from predator species. Predators can attack
from a certain number of places from the second half of
the boundary of the habitat. The circular form and the
used boundary conditions are not at all restrictive and
any other forms of the habitat and of the boundary
conditions may equally well be considered on the same
mathematical basis. We found that the density of the
small-size prey species is lower in the hunting area, than
that of large prey species. The density of healthy and
non-reproductive large-size prey species is higher in the
hunting region than that of old, sick and those who have
lost their herds. Our model explains this behaviour
effectively. It is also observed that if the large-size prey
species has low group defence capability, then it almost
behaves like small-size prey species, the densities of both
in the habitat becoming almost equal. However, we
hope that the results and methodological framework
outlined here will provide a useful tool for others to
investigate the consequences for particular real systems.
In particular, observations should be carried out in
order to evaluate the physical constants implicated in
the model.
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Appendix

If jajo1; we may look for an approximate solution to
the problem as a Poincar!e expansion in the parameter a
in the form

u ¼ u0 þ au1 þ a2u2 þ? ; ðA:1Þ
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where ui; i ¼ 0; 1; 2;y; satisfy Laplace’s equation in the
circular domain. Substituting into the boundary condi-
tions ð2Þ; ð3Þ and comparing the terms with the same
order in a; one obtains the boundary conditions for the
successive approximations to any desired order. For
example, we get the following two sets of boundary
conditions for u0 and u1:

@u0

@r
¼ �q0ðu0 � 1Þ; r ¼ 1;�

p
2
oyo

p
2
; ðA:2Þ

u0 ¼ 2; r ¼ 1;
p
2
oyo

3p
2

ðA:3Þ

and

@u1

@r
¼ �q0½u1 � u20ðu0 � 1Þ	; r ¼ 1;�

p
2
oyo

p
2
; ðA:4Þ

u1 ¼ 0; r ¼ 1;
p
2
oyo

3p
2
: ðA:5Þ

From symmetry considerations, approximate solu-
tions, within the frame of the Boundary Collocation
Method, will be looked for as linear combinations of
polar harmonics in the region 0pro1; 0pypp in the
form

u0 ¼
XN�1

n¼0

anrn cos ny; u1 ¼
XN�1

n¼0

bnrn cos ny; ðA:6Þ

where N is an arbitrarily chosen positive integer, usually
called the number of degrees of freedom, and an and bn

are unknown coefficients to be determined. These forms
of the solution obviously satisfy exactly the field
equation (Laplace’s equation). Using the Boundary
Collocation Method to enforce the boundary conditions
at a certain number MðXNÞ of known boundary points
ð1; ymÞ; m ¼ 0; 1; 2;y;M � 1; one obtains the following
two (overdetermined) systems of 2M nonlinear algebraic
equations in the 2N unknowns a0; a1; a2;y; aN�1 and
b0; b1; b2;y; bN�1:XN�1

n¼0

n

q0
þ 1

� �
an cos nym ¼ 1; 0pyo

p
2
; ðA:7Þ

XN�1

n¼0

an cos nym ¼ 2;
p
2
oypp ðA:8Þ

and

XN�1

n¼0

n

q0
þ 1

� �
bn cos nym ¼ u20mðu0m � 1Þ; 0pyo

p
2
;

ðA:9Þ

XN�1

n¼0

bn cos nym ¼ 0;
p
2
oypp; ðA:10Þ

where u0m ¼ u0ð1; ymÞ and m ¼ 0; 1; 2;y;M � 1:
The system (11)–(14) will be solved for different

values of N in two stages: First, one solves (11), (12) for

an; from which u0 is calculated. Then, using the obtained
function, one solves (13), (14) for bn; from which u1 is
calculated. For each value of N ; the corresponding
optimal value ofM will be determined for the least error
in satisfying the boundary conditions. It is known that
the Boundary Collocation Method generally performs
effectively and produces highly accurate results. How-
ever, the error in satisfying the boundary conditions is
not monotonically decreasing with N: Initially, the error
decreases up to a certain critical value of N ; after which
such a behaviour fails to persist and the error increases
or oscillates. The error measure is defined as follows:

e ¼ sup
yA½0;p	

ERðyÞ; ðA:11Þ

with

ERðyÞ ¼
jER1ðyÞj; 0pyop

2

jER2ðyÞj; p
2
oypp

(
ðA:12Þ

and

ER1ðyÞ ¼
XN�1

n¼0

n

q0
þ 1

� �
ðan þ abnÞ cos ny� 1 ðA:13Þ

�a
XN�1

n¼0

an cos ny

 !2 XN�1

n¼0

an cos ny� 1

 !
;

ðA:14Þ

ER2ðyÞ ¼
XN�1

n¼0

ðan þ abnÞcos nym � 2: ðA:15Þ
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