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Abstract

Spatial heterogeneity is a strong determinant of host-parasite relationships, however local-scale mechanisms are often not

elucidated. Generally speaking, in many circumstances dispersal is expected to increase disease persistence. We consider the case

when host populations show density-dependent dynamics and are connected through the dispersal of individuals. Taking the

domestic cats (Felis catus)—Feline Leukemia Virus (FeLV) as a toy model of host-microparasite system, we predict the disease

dynamics when two host populations with distinct or similar structures are connected together and to the surrounding environment

by dispersal. Our model brings qualitatively different predictions from one-population models. First, as expected, biologically

realistic rates of dispersal may allow FeLV to persist in sets of populations where the virus would have gone extinct otherwise, but a

reverse outcome is also possible: eradication of FeLV from a small population by connexion to a larger population where it is not

persistent. Second, overall prevalence as well as depression of host population size due to infection are both enhanced by dispersal,

even at low dispersal rates when disease persistence is not achieved in the two populations. This unexpected prediction is probably

due to the combination of dispersal with density-dependent population dynamics. Third, the dispersal of non-infectious cats has

more influence on virus prevalence than the dispersal of infectious. Finally, prevalence and depression of host population size are

both related to the rate of dispersion, to the health status of individuals dispersing and to the dynamics of host populations.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The metapopulation concept constitutes a fruitful
approach to study the influence of spatial heterogeneity
on the dynamics of host-parasite systems (Grenfell and
Harwood, 1997). Generally speaking, spatial hetero-
geneity is thought to have a stabilizing effect on host-
parasite systems (Pimentel et al., 1963). Specifically, it
can increase disease persistence (Post et al., 1983; Wood
and Thomas, 1996), reduce the occurrence of fade-outs
(Hassell et al., 1991 in parasitoids) and drive epidemic
cycles (Bolker and Grenfell, 1995). The influence of
parasites on host demography also depends on spatial
structure (Hess, 1994; Gog et al., 2002; McCallum and
Dobson, 2002). Spatial heterogeneity is supposed to act
through phase differences between oscillations in
patches: if patches become synchronized then spatial

effects disappear. For this reason several authors
addressed the dynamics of patch coupling (Lloyd and
May, 1996; Earn et al., 1998; Swinton et al., 1998).

Our starting point is to study how host dispersal
among populations of domestic cat (Felis catus) affects
the dynamics of Feline Leukemia Virus (FeLV).
Previous non-spatially designed models predicted that
FeLV dynamics depends on the size of the host
population under consideration and on the relationship
between host density and the pattern of contacts
(Fromont et al., 1998b). This distinction was made in
accordance with previous data (Fromont et al., 1998a).
However, in a rural environment, cat populations are
connected to each other through dispersal (Liberg,
1980). Our aim is to test whether dispersal has any
influence on FeLV propagation.

Several formulations have been introduced to model
spatial dynamics of epidemics (Faddy, 1986; Lloyd and
May, 1996). In order to choose an appropriate form for
the model we assess how hosts use space at the scale
considered (Hastings, 1990). We consider domestic cats
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living with human beings in villages separated from each
other (Fromont et al., 1998a). A cat population is
defined by all cats living in a village or a farm and
contacts between cats from different villages occur
through dispersal. We thus represent space in a
discretized way—i.e., n populations are connected to
each other—thus we may use either patch-coupling
models (Hassell et al., 1991) or lattice models consider-
ing space as a grid of cells, each cell including a
population (Durrett, 1995). Lattice models represent
systems where numerous cells are connected (White
et al., 1995). Here, because we intend to detail the local
dynamics of the system and its biological relevance, we
use patch coupling. We derive a model with n popula-
tions but analyse the case when n ¼ 2; as the minimal
model to investigate the influence of dispersal rate and
of the characteristics of dispersers.

Within local host populations, the density and spatial
distribution of hosts also influence the rate of contacts
among individuals, and thus the incidence of diseases
(Blower and Roughgarden, 1989; Diekmann et al., 1995;
McCallum et al., 2001). In the case of FeLV, models
designed for large populations assumed frequency-
dependent incidence and predicted no threshold popula-
tion size for virus persistence, whereas models of small
populations assumed density-dependent transmission
and predicted the possibility of FeLV extinction
(Fromont et al., 1998b). For this reason, and contrarily
to many previous models (Post et al., 1983; Jansen and
Lloyd, 2000; Keeling and Rohani, 2002), we assume
density-dependent host population dynamics (Begon
et al., 1992) and frequency-dependent or density-
dependent incidence depending on population size.

Finally, in discrete-space models, two modes of
disease propagation can be distinguished: contact and
dispersal. In contact models, individuals from one
population directly infect individuals from other popu-
lations or temporarily migrate to another population
(Keeling and Rohani, 2002), for example during the
reproduction period. However, in cat populations,
dispersal is definitive: males disperse from their native
home range under the pressure of dominant males and
settle in areas where no dominant male is established.
When a resident male dies, his home range is soon
occupied by a new, usually immigrating, male (Liberg,
1980). The relevant process is thus dispersal (Bailey,
1975), contrarily to assumption made by numerous
previous models (Nold, 1980; Post et al., 1983; May and
Anderson, 1984; Hethcote and Van Ark, 1987; Andrea-
sen and Christiansen, 1989; Swinton et al., 1998). We
also test the influence of the characteristics of dispersers
on FeLV dynamics. In a rural environment, dispersal
mainly concerns more than 2 years old, sexually mature
males. Because young adult males are among the
categories most often infected by FeLV (Fromont
et al., 1998a), we investigate whether dispersal of

infectious cats has the same influence than dispersal of
non-infectious ones.

We thus propose a model including two hypotheses
that are not usually considered in spatial epidemiologi-
cal models: density-dependent host population dy-
namics and host dispersal. Our aim is to apply such
hypotheses to the case of FeLV-cat system where they
are biologically relevant. We examine the predictions of
the model in terms of disease persistence, prevalence and
influence on host population dynamics.

2. Materials and methods

2.1. Host population structure and growth

The typical structure of the environment modelled
here is a set of discrete villages and farms in an
agricultural landscape. We consider n host populations,
each of them living on a specific patch (either farm or
village) and having there its own dynamics. In order
to take into account other, non-specified populations
surrounding the studied populations we consider a
population of cats, called matrix, whose dynamics is
mostly unaffected by the n populations (Fig. 1); the
matrix could represent transient feral males of unknown
origin that are recorded at all times of the year around
cat populations (Liberg, 1980), some of them being cats
dispersing from unknown populations.

The model deals with numbers of individuals, as
opposed to densities (however, in a given population,
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Fig. 1. Typical structure and dispersal rates in a system considered in

the model. Several populations (here, one village and one farm) are

connected to each other by exchange rates cij : The matrix represents

transient feral males of unknown origin. Cats emigrate from each

population to the matrix at rate ei0 and immigrate from the matrix to

each population at rate i0i:
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field observations suggest that the spatial range occu-
pied by the population does not change when the
number of cats changes, thus density and numbers are
highly correlated). The dynamics of cat populations has
been described previously (Fromont et al., 1998b). In
our model, Pi ¼ PiðtÞX0 equals the total number of cats
at time t in the ith population (1pipn). Let biðPiÞX0
and diðPiÞX0 be the fertility and mortality functions,
respectively. Let giðPiÞ ¼ biðPiÞ � diðPiÞ; be the intrinsic
growth rate of the ith population. When a population is
free from FeLV and isolated, its dynamics is governed
by the ordinary differential equation

P0
i ¼ ðbiðPiÞ � diðPiÞÞPi; tX0: ð1Þ

Here we consider populations showing logistic-type
growth, namely biðPiÞ is a constant birth rate bi > 0;
independent of population size, and diðPiÞ is a density-
dependent mortality function: diðPiÞ ¼ mi þ ðri=KiÞPi;
ri ¼ bi �mi > 0; mi > 0; where mi is the natural death
rate. Ki is the unique positive stationary solution of (1),
globally asymptotically stable for Pið0Þ > 0: Ki is the
carrying capacity of the environment on the ith patch.

The within-population model also takes into account
some features of host population structure by using
different incidence functions. Cat populations show
variable density, from 1 cat/km2 in places where food
resources are scarce to 2000 cats/km2 around abundant,
clumped food resources. Spatial and social structures of
cat populations vary with density (Liberg et al., 2000).
As a consequence, we proposed a qualitative relation-
ship between host density and contact rate, leading to
different incidence functions according to the popula-
tion considered (Fromont et al., 1998b). Here we are
interested in cats living at intermediate density (10–
100 cats/km2) in the rural environment. Small popula-
tions, i.e., places where carrying capacities lies under
50 cats, are designated as ‘‘farms’’ and have a density-
dependent transmission (De Leo and Dobson, 1996),
otherwise called ‘‘mass action’’ (Anderson and May,
1979) or ‘‘pseudo mass action’’ (De Jong et al., 1995),
because all cats in a population are expected to encounter
each other. On the contrary, in populations where
carrying capacity stands above 60 individuals, thereafter
called ‘‘villages’’, an individual only has contact with its
neighbours and homogeneous mixing cannot be as-
sumed. In villages, we use frequency-dependent incidence
(De Leo and Dobson, 1996), originally named ‘‘propor-
tionate mixing’’ (Hethcote and Yorke, 1984) or ‘‘true
mass action’’ (De Jong et al., 1995).

3. FeLV transmission within a single isolated population

The clinical course of FeLV has been described
previously (Hoover and Mullins, 1991; Hardy, 1993).
In the ith population, we denote Xi ¼ XiðtÞ; Yi ¼ YiðtÞ

and Zi ¼ ZiðtÞ the respective numbers of susceptible,
infectious (or viremic) and immune individuals, so that
Pi ¼ Xi þ Yi þ Zi represents the total population. Note
that infectious and immunes are not defined as in SIR
classical models. Here infected individuals become either
infectious or immune, and then stay in their class
lifelong (Charreyre and Pedersen, 1991; Hoover and
Mullins, 1991). Let siðXi;Yi;ZiÞ be the incidence
function, i.e. the number of newly infected cats per unit
of time and let pi; 0ppip1; be the proportion of
infected cats developing FeLV viremia. Lastly ai > 0 is
the additional mortality rate of infectious cats due to
FeLV.

When the ith population is isolated, the dynamics of
the propagation of FeLV within this population is
governed by a set of three ordinary differential
equations:

X 0
i ¼ �siðXi;Yi;ZiÞ þbiðXi þ ZiÞ �diðPiÞXi;

Y 0
i ¼ pisiðXi;Yi;ZiÞ �aiYi �diðPiÞYi;

Z0
i ¼ ð1� piÞsiðXi;Yi;ZiÞ �diðPiÞZi

8><
>:

ð2Þ

together with the initial conditions Xið0Þ > 0; Yið0Þ > 0;
Zið0ÞX0: The ordinary differential equation for the total
population reads P0

i ¼ ½bi � diðP�
i Þ�P

�
i � ðai þ biÞYi: The

incidence function takes one of the two forms:
siðXi;Yi;ZiÞ ¼ si;maXiYi; si;ma > 0 for density-dependent
transmission or siðXi;Yi;ZiÞ ¼ si;pmðXiYi=PiÞ; si;pm > 0
for frequency-dependent transmission.

Assuming that this ith population is isolated from
others, including the matrix, the reproductive number
Ri;0 is given by (Fromont et al., 1997, 1998b)

Rma
i;0 ¼

pisi;maKi

bi þ ai
;

R
pm
i;0 ¼

pisi;pm
bi þ ai

for the density-dependent and frequency-dependent
transmission, respectively. FeLV will not develop in
this isolated population, i.e. the stationary state ðKi; 0; 0Þ
of (2) is locally asymptotically stable (LAS), when
Ri;0p1: As a consequence there is no threshold
population level in the frequency-dependent model,
but there is one in the density-dependent model, as
classically described (McCallum et al., 2001).

4. Dispersal among populations

In the matrix we denote X0 ¼ X0ðtÞ; Y0 ¼ Y0ðtÞ and
Z0 ¼ Z0ðtÞ the respective numbers of susceptible,
infectious and immune individuals, so that P0 ¼ X0 þ
Y0 þ Z0 represents its total population. These are not
considered dynamical variables but they are assumed to
be constant in time (see hypotheses (H0), (H1) and (H5)
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below). We distinguish three types of dispersal among
populations (Fig. 1):

* Dispersal from the matrix, i.e. population P0; to any
of the n populations is called ‘‘immigration’’; the
immigration rates from the matrix to population i are
iX0i in the susceptible class, iY0i in the infectious class
and iZ0i in the immune class.

* Dispersal from any of the n populations to the matrix
is called ‘‘emigration’’; the emigration rates from
population i to the matrix are eXi0 in the susceptible
class, eYi0 in the infectious class and eZi0 in the immune
class.

* Dispersal between any two of the n populations is
called ‘‘exchange’’; the exchange rates from popula-
tion i to population j are cXij in the susceptible class,
cYij in the infectious class and cZij in the immune class.

For the sake of simplicity, we neglect mortality during
dispersal and we consider that cats entering in a new
population behave like native individuals, particularly
concerning their rate of contact with other individuals.
Our full model with n populations reads:

X 0
i ¼ �siðXi;Yi;ZiÞ þ biðXi þ ZiÞ

� diðPiÞXi �
X
jai

cXij Xi

þ
X
jai

cXji Xj � eXi0Xi þ iX0iX0;

Y 0
i ¼ pisiðXi;Yi;ZiÞ � aiYi � diðPiÞY

�
X
jai

cYij Yi þ
X
jai

cYji Yj � eYi0Yi �
X
jai

cZij Zi þ iY0iY0;

Z0
i ¼ ð1� piÞsiðXi;Yi;ZiÞ � diðPiÞZi

�
X
jai

cZij Zi þ
X
jai

cZji Zj � eZi0Zi þ iZ0iZ0:

We analyse the model regarding the persistence of
viremia, the prevalence (frequency) of viremia and the
depression of host population size due to infection.
Depression is defined as the difference between host
population size with and without virus (in percent of
population size without virus).

5. Results

The dynamics of the propagation of FeLV through n

populations and a matrix is governed by a set of 3n
ordinary differential equations. We analyse here this
dynamics when n ¼ 2 populations are connected, pla-
cing various assumptions on local population structures,
on the epidemiological status of the matrix, and on the
rates of exchange, emigration and immigration. Our two

populations model reads:

X
0

1 ¼ �s1ðX1;Y1;Z1Þ þ b1ðX1 þ Z1Þ

� d1ðP1ÞX1 � ðcX12 þ eX10ÞX1 þ cX21X2 þ iX01X0;

Y
0

1 ¼ p1s1ðX1;Y1;Z1Þ � a1Y1 � d1ðP1ÞY1

� ðcY12 þ eY10ÞY1 þ cY21Y2 þ iY01Y0;

Z
0

1 ¼ ð1� p1Þs1ðX1;Y1;Z1Þ � d1ðP1ÞZ1

� ðcZ12 þ eZ10ÞZ1 þ cZ21Z2 þ iZ01Z0;

X
0

2 ¼ �s2ðX2;Y2;Z2Þ þ b2ðX2 þ Z2Þ

� d2ðP2ÞX2 � ðcX21 þ eX20ÞX2 þ cX12X1 þ iX02X0;

Y
0

2 ¼ p2s2ðX2;Y2;Z2Þ � a2Y2

� d2ðP2ÞY2 � ðcY21 þ eY20ÞY2 þ cY12Y1 þ iY02Y0;

Z
0

2 ¼ ð1� p2Þs2ðX2;Y2;Z2Þ � d2ðP2ÞZ2

� ðcZ21 þ eZ20ÞZ2 þ cZ12Z1 þ iZ02Z0 ð3Þ

together with the set of initial conditions Xið0ÞX0;
Yið0Þ > 0; Zið0ÞX0; i ¼ 1; 2:

5.1. Population dynamics in the absence of virus

We first analyse the model with no infectious and no
immune cat in any population. In this setting the
dynamics of the interactions between the two popula-
tions is governed by a system of two ordinary
differential equations:

P0
1 ¼ ðb1 � d1ðP1ÞÞP1 � ðcX12 þ eX10ÞP1 þ cX21P2 þ iX01P0;

P0
2 ¼ ðb2 � d2ðP2ÞÞP2 � ðcX21 þ eX20ÞP2 þ cX12P1 þ iX02P0

ð4Þ

together with the initial data P1ð0ÞX0; P2ð0ÞX0; we
write P0 instead of X0:

A stationary state for (4) is a couple ðP�
1;P

�
2Þ with

0pP�
1;P

�
2; solution of the nonlinear system

0 ¼ ðb1 � d1ðP1ÞÞP�
1 � ðcX12 þ eX10ÞP

�
1 þ cX21P

�
2 þ iX01P0;

0 ¼ ðb2 � d2ðP2ÞÞP�
2 � ðcX21 þ eX20ÞP

�
2 þ cX12P

�
1 þ iX02P0:

ð5Þ

By direct substitution in (5), the trivial stationary state
(0, 0), corresponding to the extinction of both popula-
tions is feasible if and only if

ðH1Þ iX01P0 ¼ iX02P0 ¼ 0;

i.e., if and only if there is no immigration from the
matrix towards the two populations. Then, still assum-
ing (H1) satisfied, (0,0) is LAS, i.e. both populations go
extinct, if the following set of linear inequalities in the
variables cX12 and cX21 holds:

ðC1Þ

r1 � eX10 � cX12p0; ðC1:1Þ

r2 � eX20 � cX21p0; ðC1:2Þ

ðr1 � eX10 � cX12Þðr2 � eX20 � cX21Þ � cX12c
X
21X0; ðC1:3Þ

8><
>:

in which case it is globally asymptotically stable (GAS).
The stability condition (C1) can be represented using a
graphical representation in the variables ri � eXi0 � cXij
(Fig. 2); ri � eXi0 � cXij represents the intrinsic population
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growth rate of population i minus the emigration rate
from population i towards the matrix and population j:
In the following, ‘‘net growth rate’’ of population i will
stand for ri � eXi0 � cXij : Stability and unstability zones
depend on the signs of net growth rates: when at least
one population has a positive net growth rate then (0, 0)
is unstable, i.e., at least one population does not go
extinct. When both net growth rates are nonpositive
then (0, 0) is stable provided cX12 and cX21 be small enough;
as an example, this is the case when either cX12 ¼ 0 or
cX21 ¼ 0; this is, when there is no exchange from one
population to the other one.

A semi-trivial stationary state ð0;P�
2Þ;P

�
2 > 0 corre-

sponding to the extinction of the first population and
persistence of the second one is feasible if and only if

ðH2Þ iX01P0 ¼ 0; cX21 ¼ 0

and either r2 � eX20 > 0 or iX02P0 > 0;

i.e., if and only if there is no immigration of individuals
from the matrix or from population 2 towards popula-
tion 1, and either a positive net growth rate for
population 2 or a positive immigration from the matrix
to population 2. Then, still assuming (H2) holds, ð0;P�

2Þ
is GAS provided (C1.1) holds.

A similar analysis works for a semi-trivial state
ðP�

1; 0Þ;P
�
1 > 0: a unique one exists if and only if

ðH3Þ iX02P0 ¼ 0; cX12 ¼ 0

and either r1 � eX10 > 0 or iX01P
�
0 > 0

and, still assuming (H3) to hold it is GAS provided
(C1.2) holds.

We are left with looking for a stationary state
ðP�

1;P
�
2Þ;P

�
1 > 0;P�

2 > 0 corresponding to the coexistence
of both populations. A unique such a stationary state
exists in four situations, namely when:

* (H2) holds, but (C1.1) is not satisfied, say r1 � eX10 >
cX12;

* (H3) holds, but (C1.2) is not satisfied, say r2 � eX20 >
cX21;

* (H4) iX01P0 > 0; iX02P0 > 0;
* (H1) holds, (C1.1) and (C1.2) hold, but (C1.3) is not

satisfied.

Fig. 3 provides an alternative description of these
conditions. Last, assuming either one of these four
conditions to hold, then this unique positive stationary
state is GAS.

Finally, for latter purposes it is necessary to compare
any existing persistent state ðP�

1;P
�
2Þ to the correspond-

ing carrying capacities ðK1;K2Þ: Toward this end set
P�
i ¼ Ki þ ui; i ¼ 1; 2: Note that �Kiouio0"½bi �

diðP�
i Þ�P

�
i > 0; i ¼ 1; 2: Then, adding the two equations

in (5) yields

½b1 � d1ðP�
1Þ�P

�
1 þ ½b2 � d2ðP�

2Þ�P
�
2

þ ðiX01 þ iX02ÞP
�
0 � ðeX10K1 þ eX20K2Þ ¼ eX10u1 þ eX20u2: ð6Þ

The quantity ðiX01 þ iX02ÞP
�
0 � ðeX10K1 þ eX20K2Þ is the bal-

ance of emigration versus immigration between the two
populations and the matrix. When it is positive at least
one population settles above its carrying capacity, when
it is negative at least one settles below its carrying
capacity and when it is 0 one settles above and the other
one settles below. When exchange, emigration and
immigration rates go to 0 then a continuity argument
shows that ðP�

1;P
�
2Þ-ðK1;K2Þ:

5.2. FeLV propagation in two populations with

disease-free matrix

In this part we analyse which conditions allow for the
persistence of disease in two connected populations. We
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Fig. 2. The shaded area represents the two-dimensional zone delimited

by the set of inequalities v1p0; v2p0; v1v2 � cX0 when cX0: It is used
in the text to depict condition (C1) for v1 ¼ r1 � eX10 � cX12; v2 ¼
r2 � eX20 � cX21; c ¼ cX21c

X
12 and condition (C2) for v1 ¼ A1 � eY10 � cY12;

v2 ¼ A2 � eY20 � cY21; c ¼ cY21c
Y
12:

Fig. 3. Existence and global stability conditions for stationary states of

(4). If condition (C) is apb then condition non-(C) is a > b; also - -

means non-feasible. Note that when (H1) is satisfied (left column), then

four different set of conditions lead to the existence and stability of a

persistent state.
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first assume that there is no immigration of infectious or
immune individuals from the matrix and that the
number of susceptible individuals in the matrix is a
constant, say

ðH5Þ X0ðtÞ ¼ P0X0; iYoiY0ðtÞ ¼ iZoiZ0ðtÞ ¼ 0:

This also contains the model with no infectious in the
matrix. The dynamics of the propagation of FeLV is
governed by (3), assuming (H5) satisfied. Let us assume:

ðH6Þ in the absence of virus;

there is a unique persistent state ðP�
1;P

�
2Þ

(see above or Fig. 3 for details). Then the disease free
state ðP�

10; 0;P
�
2; 0; 0Þ is a stationary state if and only if

there is no immigration of infectious or immune
individuals from the matrix, which is actually the case
from hypothesis (H5) (this is seen by direct substitution
in (3)). Analysing the local stability of ðP�

10; 0;P
�
2; 0; 0Þ

will tell us whether FeLV can develop when there is no
supply of infectious or immune individuals from the
matrix. Toward this end, let us introduce for the ith
population a parameter Ai defined as

Ai ¼
pisi;maP

�
i � ðdiðP�

i Þ þ aiÞ density-dependent transmission;

pisi;pm � ðdiðP�
i Þ þ aiÞ frquency-dependent transmission;

(

Ai is to be interpreted as the intrinsic growth rate of the
infectious class in the ith population i ¼ 1; 2 at
equilibrium when emigration and exchange are ne-
glected in this very class. Then, assuming condition (H5)
is satisfied, ðP�

1; 0; 0;P
�
2; 0; 0Þ is LAS if the following set

of inequalities in the variables cY12; e
Y
10; c

Y
21 and eY20 holds:

ðC2Þ

A1 � eY10 � cY12p0; ðC2:1Þ

A2 � eY20 � cY21p0; ðC2:2Þ

ðA1 � eY10 � cY12ÞðA2 � eY20 � cY21Þ � cY21c
Y
12X0: ðC2:3Þ

8><
>:

Condition (C2) can be represented by using a graphical
representation in the variables Ai � eYi0 � cYij (Fig. 2).
Fig. 2 shows that (C2) is similar to (C1), but concerning
the infectious class only. Again, stability zones depend
on the signs of Ai � eYi0 � cYij which can be interpreted as
the ‘‘ net growth rate of the infectious class in the ith
population’’: when at least one net growth rate of
infectious class is positive then ðP�

10; 0;P
�
2; 0; 0Þ is

unstable, while when both are nonpositive then
ðP�

10; 0;P
�
2; 0; 0Þ is LAS provided both cYij be small

enough.
For small emigration rates eYi0 ; i ¼ 1; 2 in infectious

classes with respect to Ai; the stability condition (C2)
relies on the signs of A1 and A2 which, in turn, depend
on the rates of exchange and emigration of susceptible
individuals through P�

1 and P�
2: Once these are pre-

scribed, and for small emigration rates in infectious
classes, the stability analysis relies on the exchange rates
for infectious individuals, no role being played by
immune individuals. Using ui ¼ P�

i � Ki introduced
earlier and the reproductive numbers Ri;0 one can

rewrite Ai in a different fashion, namely,

Ai ¼

ðbi þ aiÞðRma
i;0 � 1Þ þ pisi;ma �

ri

Ki

� �
ui;

density-dependent transmission;

ðbi þ aiÞðR
pm
i;0 � 1Þ �

ri

Ki

ui;

frequency-dependent transmission:

8>>>>>>><
>>>>>>>:

Clearly some conclusions can be drawn concerning the
stability of ðP�

10; 0;P
�
2; 0; 0Þ and the propagation of FeLV

between two populations having small positive emigra-
tion and exchange rates for infectious individuals. First,
if incidence in population i is frequency-dependent with
R

pm
i;0 > 1; then ðP�

10; 0;P
�
2; 0; 0Þ is not stable when uip0 or

small enough. Thus, FeLV can actually propagate from
a village where it is endemic to any neighbouring
population as soon as the dispersal process for
susceptible individuals decreases population size in the
village. Next, if incidence in population i is density-
dependent with Rma

i;0o1; then ðP�
10; 0;P

�
2; 0; 0Þ becomes

unstable when ui > 0 is large enough, provided ðpisi;ma �
ðri=KiÞÞ > 0 (which is likely to hold for most cat
populations). Thus, even though FeLV would not
propagate within two isolated populations, one of them
being a farm, this can be achieved if the size of the farm
population can be suitably increased by dispersal of
susceptible individuals. Conversely, still assuming a
density-dependent incidence in population i with Rma

i;0 >
1; then ðP�

10; 0;P
�
2; 0; 0Þ can become stable when uio0

is large enough, provided ðpisi;ma � ðri=KiÞÞ > 0: Thus,
FeLV can be eradicated from a farm where it is
persistent upon connecting it to a larger population
where incidence is frequency-dependent. The following
case studies illustrate the above results and examine
the consequences of the class of individuals dispersing,
of the rate of dispersal and of the structure of the
connected populations.

5.2.1. The village–farm model

Fig. 4 illustrates the village–farm model and compares
the dispersal of non-infectious versus infectious animals.
We use parameter values estimated previously (Fromont
et al., 1998b), except for sma ¼ 0:11; which is chosen in
order to set the threshold for FeLV extinction to K ¼ 45
(from the definition of Rma

0 ). The rates of dispersal are
taken in accordance with field observations (Liberg et al.,
2000). We assume that immune cats, which have a
normal life, have the same dispersal rate than susceptible
cats. With this set of parameters, when considering no
exchange between the two populations (ck12 ¼ ck21 ¼ 0),
FeLV develops in the village and goes extinct from the
farm. When the two populations are connected through
the exchange of either susceptible and immune cats
(cX12 ¼ cZ12 ¼ 0:05; cX21 ¼ cZ21 ¼ 0:02; Fig. 4a) or infectious
cats only (cY12 ¼ 0:05; cY21 ¼ 0:02; Fig. 4b), FeLV persists
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in both population. However, overall prevalence is
lower when dispersers are infectious (3.36%) than when
they are susceptible or immune (3.94%). Also, the
difference between prevalences in the two populations is
lower when dispersers are infectious than when they are
susceptible or immune.

Fig. 5 shows the influence of the rate of dispersal from
the village to the farm on prevalence of viraemia and on
depression of host population size when cX21 ¼ cZ21 ¼
0:02: Here dispersal involves susceptible and immune
cats. Fig. 5a shows that when the rate of dispersion from
the village to the farm is low (cX12 ¼ cZ12p0:02), FeLV
goes extinct in the farm. Nevertheless, prevalence in the
village rises with the rate of exchange cX12 ¼ cZ12: When
the rate of dispersion from the village to the farm stands
above 0.03, FeLV is able to persist in the farm also and
both prevalences keep rising with cX12 ¼ cZ12: However,
prevalence is always lower in the farm compared to the
village, and it is necessary to have cX12 ¼ cZ12X0:08 so
that there is at least one infectious individual in the farm
at equilibrium. Fig. 5b shows that depression of host
population size also increases with cX12: It is noteworthy
that, even at low exchange rates when FeLV does not
persist in the farm, both population sizes are lowered by
FeLV, due to exchanges between the infected village and
the virus-free farm.

5.2.2. The farm–farm model

Fig. 6a illustrates the farm–farm model. We consider
a system of two farms where both R0 are below unity
and where the two populations are connected only
through dispersal of non-infectious cats. A system with
K1 ¼ 40; K2 ¼ 42; cX12 ¼ cZ12 ¼ 0:15 and cX21 ¼ cZ21 ¼ 0:05

allows for persistence of FeLV in population 2 only
because dispersal increases the size of population 2 and
decreases the size of population 1. Notice that overall
prevalence and depression now equal only 0.20% and
0.84%, respectively.

5.3. Model with matrix

Here we consider the case of two populations with
immigrating infectious individuals, i.e., we assume

ðH7Þ X0ðtÞ ¼ X0X0;Y0ðtÞ ¼ Y0 > 0;Z0ðtÞ

¼ Z0X0; tX0 and either iY01 > 0 or iY02 > 0:

The dynamics of FeLV propagation is governed by the
full set of ordinary differential equations given in (3).
The existence and stability of a non-trivial stationary
state ðP�

1;P
�
2Þ with positive components is analysed

above. Again, the state ðP�
1; 0; 0;P

�
2; 0; 0Þ does not exist

anymore when condition (H7) holds because of the
positive input of infectious individuals from the matrix;
as a consequence, FeLV persists when condition (H7) is
satisfied.

Note that when both iY0i ¼ 0 it is also possible for
FeLV to persist within two connected populations
having both a R0 below unity, provided a suitable
supply of susceptible individuals immigrate from the
matrix, i.e. one of either iX01 > 0 or iX02 > 0 large enough
and X0 > 0: Fig. 6b illustrates this case in the same
situation as in Fig. 6a except iX01 ¼ iZ01 ¼ 0:15 with X0 ¼
100 and Z0 ¼ 20: Then FeLV is able to persist in both
farms: persistence in farm 1 is due to immigration from
the matrix and persistence in farm 2 is due to exchanges
with farm 1. Comparing Figs. 4a, 6a and 6b shows that
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Fig. 4. Time evolution of the prevalence (Yi=Pi) of FeLV viremia in a village–farm model. Common parameter values are b ¼ 0:88
females.female.yr�1, m ¼ 0:51 yr�1, p ¼ 0:33 and a ¼ 0:76 yr�1 for the two populations. Specific parameter values are K1 ¼ 250; spm ¼ 6; ik01 ¼
ek10 ¼ 0; k ¼ X ;Y ;Z for the village (population 1) and K2 ¼ 40; sma ¼ 0:11; ik02 ¼ ek20 ¼ 0; k ¼ X ;Y ;Z for the farm (population 2). At t ¼ 0 each

population contains K � 1 susceptible cats and 1 viraemic cat. Without connection between populations, FeLV persists in the village (R
pm
1;0 ¼ 1:21)

but goes extinct from the farm (Rma
2;0 ¼ 0:89). In (a) connection involves susceptible and immune cats, i.e., cYij ¼ 0; cX12 ¼ cZ12 ¼ 0:05 and cX21 ¼ cZ21 ¼

0:02: In (b), connection only involves infected cats, i.e., cXij ¼ cZij ¼ 0; cY12 ¼ 0:05 and cY21 ¼ 0:02:
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prevalence in a farm is higher when the farm is
connected to a village or the matrix than when it is
connected to another farm.

6. Discussion

Models taking into account the spatial structure of
host-parasite systems have been proposed early (Bailey,
1975; May and Anderson, 1984). Our two-population
model is in the spirit of the general model developed in
Bailey (1975, pp. 351–353), who already used frequency-
dependent transmission within populations and disper-
sal between populations. In earlier models, however,
either formal investigation was lacking (Bailey, 1975), or
models concerned populations having identical local
dynamics (Jansen and Lloyd, 2000), or adaptation to a
specific host-parasite system was incomplete (Faddy,
1986). Moreover, earlier models did not combine

dispersal with density-dependent host population
dynamics, nor separated the effects of dispersal of
susceptible or infectious hosts. We introduced these
features in the FeLV-cat model because data from a
long-term monitoring suggest that they are biologically
relevant. However, because we found unexpected
results, we advocate that the specific effect of these
hypotheses, the generic behaviour of such models and
their biological relevance for other host-parasite systems
should be investigated.

Our model implicitly assumes specific conditions
for dispersal: the dispersal rate represents the rate of
‘‘effective migration’’, i.e., the rate at which individuals
successfully settle in another population. Dispersal only
depends on the disease status of dispersers, this means
that the departure rate is not density-dependent,
however the absolute number of cats leaving the
population depends on population size. In the popula-
tion where dispersers settle, they behave like native
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farm model. Other parameter values are set as in Fig. 4.
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Fig. 6. Time evolution of the prevalence of FeLV viremia in a farm–farm and in a farm–farm–matrix models. Unless otherwise mentioned,

parameter values and initial conditions are set as in Fig. 4. In (a) a farm–farm model is considered; carrying capacities are K1 ¼ 40 (Rma
0 ¼ 0:89) and

K2 ¼ 42 (Rma
0 ¼ 0:93). Exchange only involves susceptible cats with cX12 ¼ cZ12 ¼ 0:15 and cX21 ¼ cZ21 ¼ 0:05: In (b) a farm–farm–matrix model is

considered; parameters are set as in (a) except iX01 ¼ iZ01 ¼ 0:15 with X0 ¼ 100 and Z0 ¼ 20:
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individuals. In particular, their mortality is density-
dependent. Surviving after settling down in a population
is thus easier when numerous home ranges are left vacant
by native cats, for example when FeLV regularly kills
native individuals, which seems a realistic assumption.

Concerning disease persistence, our results conform
to the general prediction that spatial heterogeneity
should promote persistence in host-parasite systems
(Andreasen and Christiansen, 1989; Wood and Thomas,
1996; Jansen and Lloyd, 2000). However, dispersal may
also favour the local extinction of the virus from small
populations, when they are connected to larger ones. We
distinguish two possible mechanisms explaining persis-
tence. When infectious cats disperse then persistence
occurs without condition. On the contrary, when
dispersal only involves susceptible individuals, the
dispersal process must act to increase the size of farms
at the expense of villages, for disease to persist in farms.
This condition means that dispersal must be asym-
metric: the rate of effective dispersal toward small
populations should be higher than toward villages. Our
model thus predicts that the attractiveness of large
populations may prevent disease persistence in small
populations.

Our outstanding conclusion is that dispersal has other
consequences than FeLV persistence only. First, the
level of the predicted prevalences is not the same
according to the kind of population structure consid-
ered. Even if quantitative outputs can only be used as
guidelines because we did not estimate field transmission
rates, prevalences predicted for farms are lower in the
case of farm–farm systems than in farm–village or farm–
matrix combinations. In the field, when farms are
connected to villages or when several surrounding
populations lead to high numbers of feral cats roaming
between populations, FeLV could be continuously
present in the farm. On the contrary, when only farms
are connected to each other, the predicted persistence at
low prevalence may probably be expressed as successive
extinctions and recolonizations. Secondly, dispersal
influences FeLV prevalence and its impact on host
population growth independently from FeLV persis-
tence. For example, in the village–farm model, when
susceptible cats have low dispersal rates, persistence is
not achieved in the farm, however FeLV prevalence in
the village is related to the rate of dispersal. As a
consequence, the depression of host population size due
to FeLV increases as soon as dispersal occurs, whether
or not disease persistence is achieved. Particularly, a
depression is observed in the farm where FeLV does not
persist. We hypothesize that this effect results from the
combination of dispersal with density-dependent popu-
lation dynamics: the farm ‘‘gives’’ cats to compensate
the impact of disease in the village. This prediction
has important consequences regarding the dynamics of
small populations: disease may affect population

dynamics even when it is not present in the population
but only in surrounding connected populations.

Finally, important consequences derive from the
category of individuals dispersing. Beside the influence
on FeLV persistence discussed above, the disease status
of dispersers influences virus prevalence. The overall
prevalence is lowered when infectious cats disperse,
compared to the case when non-infectious disperse. In
other words, prevalence is more sensitive to the dispersal
rate of non-infectious than to that of infectious.
However, one must notice that, with similar dispersal
rates, the absolute number of non-infectious dispersers
is higher than the absolute number of infectious
dispersers. Probably, the dispersal of susceptible indivi-
duals displaces the reservoir of the disease while the
dispersal of infectious displaces the virus itself. More-
over, the dispersal of infectious cats decreases the
difference between prevalences in the village and in the
farm. This result is in agreement with the analysis of
disease persistence: the dispersal of infectious equili-
brates disease levels of the connected populations more
efficiently than the dispersal of susceptibles.

As a conclusion, with minimal biological hypo-
theses, we predict that important changes arise as soon
as host populations are connected through dispersal: the
impact of disease on host population growth increases
and disease may act on distant populations through
dispersal, even when persistence is not achieved.
Moreover, because these conclusions prove to be
sensitive to the dispersal rate and to the class of
individuals dispersing, we hypothesize that taking into
account more details of the dispersal process would
possibly modulate the predictions of the model. For
example, other characteristics than infection status
could differentiate dispersers from non-dispersers, such
as their behaviour, body condition, social rank, thus
modifying their contact rate, reproductive success or
survival. The characteristics of populations could
also determine their attractiveness (Clobert et al.,
2001) and dispersal may then be dependent on the
information that individuals can gain about their
environment: for example a susceptible cat would
benefit from leaving a heavily infected population to
join a healthier one. To precisely determine the influence
of dispersal in the cat-FeLV or other host-parasite
systems, we now need to better take into account field
characteristics of dispersion, to consider more realistic
functions in the model.
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Appendix A. Stability analysis of disease free states

A.1. Population dynamics in the absence of virus

Some basic generic results for (4) can be quickly
derived. The system of ordinary differential equations
in (4) can be conveniently rewritten P0

1 ¼ f1ðP1;
P2Þ;P0

2 ¼ f2ðP1;P2Þ:
One may observe that trajectories starting a time t ¼ 0

from Pið0ÞX0; i ¼ 1; 2 remain nonnegative at later
times, PiðtÞX0; i ¼ 1; 2; tX0; and are globally bounded.
One can check that no periodic trajectory with positive
components can exist; this follows from the Bendixson-
Dulac criterion: a straightforward computation shows

q
qP1

1

P1P2
f1ðP1;P2Þ

� �
þ

q
qP2

1

P1P2
f2ðP1;P2Þ

� �
o0:

Local stability analysis for a given stationary solution of
(4) is performed upon evaluating a Jacobian matrix
there; one has

JðP1;P2Þ

¼
r1 � 2

r1

K1
P1 � ðcX12 þ eX10Þ cX21

cX12 r2 � 2
r2

K2
P2 � ðcX21 þ eX20Þ

0
B@

1
CA:

Let us begin with the trivial state (0,0). Then, assuming
(H1) is satisfied, (0,0) is feasible and it is LAS provided
the trace of Jð0; 0Þ be negative and its determinant be
positive; a direct substitution yields condition (C1).
Next, when (H1) and (C1) are fulfilled, no semi-trivial
stationary states, i.e. ð0;Pn

2Þ; ðP
n
1 ; 0Þ;P

n
i > 0; i ¼ 1; 2; can

exist. Looking for stationary states with positive
components, when (H1) holds, null clines for (4) or
(A.1) reads

P2 ¼
1

cX21

r1

K1
P2
1 þ ðcX12 þ eX10 � r1ÞP1

� �
;

P1 ¼
1

cX12

r2

K2
P2
2 þ ðcX21 þ eX20 � r2ÞP2

� �
;

a graphical analysis shows these two quadratic functions
do not intersect inside the positive orthant
ðP1;P2Þ;P1 > 0;P2 > 0;as long as condition (C1) holds,
condition (C1.3) giving the respective positions of the
clines at the (0,0). Hence (0,0) is the unique stationary
state when (H1) and (C2) are both fulfilled; this together
with previous generic results for trajectories of (4) yields
global stability.

Next, a semi-trivial stationary state ðP�
1; 0Þ;P

�
1 > 0 is

feasible if and only if (H3) holds, in which case it is
uniquely defined. The Jacobian matrix JðP�

1; 0Þ shows it
is LAS when r2 � eX20 � cX21o0: Now, when (H3) and
r2 � eX20 � cX21o0 hold, a direct analysis of the differ-
ential equation for P2 in (4) that is independent of P1

shows P2ðtÞ-0 as t-þN; exponentially; substituting
this back into the equation for P1 in (4), one easily gets

P1-P�
1 as t-þN; yielding global stability. In the

limiting case r2 � eX20 � cX21 ¼ 0; a graphical analysis of
the equation for P2 first, and then of the equation for P1

supplies the same GAS result. A similar analysis can be
carried out for a semi-trivial state ð0;P�

2Þ;P
�
2 > 0:

We now handle stationary states with positive
components, ðP�

1;P
�
2Þ;P

�
1 > 0;P�

2 > 0: A graphical analy-
sis shows that such a state exists and is unique in the
four situations described in the Results section. In the
first case where (H2) holds, the logistic type differential
equation for P1 in (4) is independent of P2 and P0;
hence, when r1 � eX10 � cX12 > 0 one has P1ðtÞ-K1 as
t-þN; exponentially; substituting this back into the
equation for P2 in (4), one easily gets P2ðtÞ-P�

2 > 0 as
t-þN; yielding global stability. A similar analysis
holds for the case where (H3) holds and r2 � eX20 � cX21 >
0: In the third case, when (H4) holds, no trivial or semi-
trivial stationary state can exist; global stability for
ðP�

1;P
�
2Þ;P

�
1 > 0;P�

2 > 0 follows from uniqueness and
previous generic results. In the last case, looking at the
Jacobian matrix yields local stability; a graphical
analysis of null clines gives global stability.

A.2. Derivation of condition (C2)

The LAS condition (C2) for the disease free state
ðP�

1; 0; 0;P
�
2; 0; 0Þ is derived upon looking at the Jacobian

matrix of system (3); this matrix is sparse but a lot of
algebra is required. A more convenient way is to reorder
the equations in system (3) along the state variables
ðX1;X2;Z1;Z2;Y1;Y2Þ; and modify the system into:
X 0

i ¼ fi ðX1;X2; Z1;Z2;Y1;Y2Þ; i ¼ 1; 2; Z0
i ¼ giðX1;X2;

Z1;Z2;Y1;Y2Þ; i ¼ 1; 2; Y 0
i ¼ hiðX1;X2;Z1;Z2;Y1;Y2Þ;

i ¼ 1; 2: Now we are to look at the local stability of
the stationary state ðP�

1;P
�
2; 0; 0; 0; 0Þ for this reordered

system, ðP�
1;P

�
2Þ being the unique persistent state of (5).

The Jacobian matrix of this reordered system evaluated
at ðP�

1;P
�
2; 0; 0; 0; 0Þ is a upper block triangular matrix

J11 J12 � � � �

J21 J22 � � � �

0 0 J33 J34 � �

0 0 J43 J44 � �

0 0 0 0 J55 J56

0 0 0 0 J65 J66

0
BBBBBBBBB@

1
CCCCCCCCCA
;

herein * are entries of no use for the stability analysis.
Using (5), direct substitution yields

J11 J12

J21 J22

 !
¼

�
ðcX21P

�
2 þ iX01P0Þ
P�
1

cX21

cX12 �
ðcX12P

�
1 þ iX02P0Þ
P�
2

0
BBB@

1
CCCA;
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J33 J34

J43 J44

 !
¼

�ðm1 þ cZ12 þ eZ10Þ cZ21

cZ12 �ðm2 þ cZ21 þ eZ20Þ

 !
;

J55 J56

J65 J66

 !
¼

A1 � ðcY12 þ eY10Þ cY21

cY12 A2 � ðcY21 þ eY20Þ

 !
:

The first two matrices have negative traces and positive
determinants; they are stable matrices. For the last one
it has a negative trace and a positive determinant
provided condition (C2) holds, which completes the
stability analysis proof.
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