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The potential of the cellular-automata (CA) method for modeling biological networks is demonstrated for
the mitogen-activated protein kinase (MAPK) signaling cascade. The models derived reproduced the high
signal amplification through the cascade and the deviation of the cascade enzymes from the Michaelis— Menten
kinetics, evidencing cooperativity effects. The patterns of pathway change upon varying substrate concentra-
tions and enzyme efficiencies were identified and used to show the ways for controlling pathway processes.
Guidance in the selection of enzyme inhibition targets with minimum side effects is one outcome of the
study.

1. Introduction. — Since its introduction 50 years ago, cellular automata (CA) have
been used to conduct studies of various dynamical systems [1]. Of interest to us is the
emerging role played by CA in the area of dynamic biological systems. Some
applications to the modeling of physical systems, such as kinetic and thermodynamic
control of chemical reactions, have been reported [2]. These studies point the way to
the application of CA to encode the outcomes of the emerging properties in dynamic
biochemical systems resulting from changes due to concentration alteration.

Biological cell function is related to the interplay of macromolecules, mostly
proteins that function as enzymes, and substrates. The antecedents of these proteins are
the genes that program their creation. The totality of these molecules can be displayed
as networks to reveal the functional relationships among them. A prominent direction
of research today is to identify the ‘ingredients’ that comprise the structural details of
these networks. The next step is to attempt to model a fragment of the network that has
a demonstrable biological function, the ultimate goal being the modeling of the entire
network.

Dynamic evolutionary networks have recently been recognized as a universal
approach to complex systems, ranging from quantum gravity to biological cells and
organisms, ecosystems, social groups, and market economy. The network approach is a
non-reductionist approach enabling analysis of the systems as a whole, which makes it
an ideal tool for system biology. Network topology is generally used in characterizing
networks, focusing on their connectivity, neighborhood, and distance relationships.
Network complexity has also been recently quantitatively characterized [3]. This
abundance of cellular-network data — produced by microarrays, two-dimensional gel
chromatography, mass spectroscopy, and other techniques — brings about another
dimension of the network approach, allowing the tracing of the continuous changes of
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network species and their interactions. The large size of the metabolic, protein, and
gene regulatory networks is a serious challenge for the traditional methods based on
dynamic modeling. It is the purpose of this study to outline the potential of CA as a
basic method for the dynamic modeling of networks having biological and medical
applications. Some preliminary work on the CA modeling of enzymatic reactions has
already been published [4-6]. However, it has been limited to the simplest cases of
linear chains of reactions and the feed-forward mechanism. In this work, we apply the
CA technique to an important signaling pathway characterized by considerable
complexity.

2. Methodology. — 2.1. Abbreviations. For the sake of presentation compactness,
particularly that of the figures and equations, a number of abbreviations have been

used. They are collected in Table 1.

Table 1. List of Abbreviations Used

Symbol Meaning

CA Cellular automata

2-D Two-dimensional

P. Transition probability (probability of an ES pair of cells turning into an EP pair of cells);
also called enzyme efficiency

ES Enzyme —substrate complex

EP Enzyme —product complex

E1l and E2 Enzymes catalyzing the forward and reverse reactions of MAPKKK activation and
deactivation (see Fig. I)

E3 Enzyme catalyzing the dephosphorylation of MAPKK-PP and MAPKK-P (see Fig. 1)

E4 Enzyme catalyzing the dephosphorylation of MAPK-PP and MAPK-P (see Fig. I)

F=MAPK Mitogen-activated protein kinase (also known as ERK, extracellular signal-regulated
kinase)

C=MAPKK Mitogen-activated protein kinase kinase (also known as ERKP, phosphorylated ERK)

A =MAPKKK Mitogen-activated protein kinase kinase kinase (also known as RAF, a serine/threonine
protein kinase)

B =MAPKKK* Activated MAPKKK (also known as RAF*)

D =MAPKK-P Monophosphorylated MAPKK (also known as MEKP, a protein kinase that phosphor-
ylates the ERK gene product)

E =MAPKK-PP Diphosphorylated MAPKK

G =MAPK-P Monophosphorylated MAPK

H=MAPK-PP Diphosphorylated MAPK

2.2. Cellular Automata. Cellular automata (CA) are dynamic systems that are

discrete in space, time, and state, and whose behavior is specified completely by rules
governing local relationships. As shown by Toffoli [7], CA are an alternative, rather
than an approximation, of differential equations in modeling physics and chemistry.
The 2-D CA models are built on a grid of usually square spaces called cells. The grid of
cells may vary depending on the problem to examine. Each cell, has four adjoining
neighbors, j, and four extended neighbors beyond j. This is called an extended von
Neumann neighborhood. The CA dynamic simulations are run on the surface of a torus
to eliminate a boundary condition. Thus, movement past an edge puts the substance at
the opposite face.
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Each cell is assigned a state governing whether it is empty or occupied by an
enzyme, a substrate, or a product in our model. The contents of a cell may break away
from an occupied neighboring cell or move to join a neighboring cell that is occupied.
These trajectories are assigned as probabilistic rules at the beginning of the dynamics to
reflect an anticipated relationship among the ingredients in the system. The rules are
then applied to each cell at random, until all cells have computed their states and
trajectories. This represents one iteration of time. The rules are applied uniformly to
each cell of the same state. The initial state of the system is random and, thus, does not
determine subsequent configurations at any iteration. The same set of rules does not
yield the same configurations, except in some average sense. The configurations after
many iterations reach a collective organization that possesses relative constancy in
appearance and in reportable counts of cells, called attributes. These are the emergent
characteristics of a complex system.

Our 2-D CA model is composed of a 100 x 100 grid. The probabilities of joining and
breaking away are assumed to be equal to unity. Each of the models was obtained as the
average of 50 runs, each of which included 5000 to 15000 iterations, a number
sufficiently large to enable reproducing the steady state of the set of reactions examined
(see, Fig. 2 below). Focusing more on the final result of the iterations than on the
temporal changes, our model is a spatial one. A network to be studied is represented by
groups of CA cells, each group representing one of the network species, an enzyme, a
substrate, and a product. The number of cells in each group reflects the relative
concentrations of each network ingredient. Each group of cells moves about freely in
the grid. They may encounter each other, but this has generally no consequence. The
only encounters that have a consequence are those between a specific substrate and a
specific enzyme. When such an encounter occurs, an enzyme —substrate complex is
modeled. This complex has an assigned probability of changing to a new complex
(enzymatic product). Following this, there is a probability assigned for the separation of
these two species.

2.3. The Rules. Probability rules govern the movement, joining, and breaking of cell
species of all kinds. Each species type X is characterized by a set of parameters
governing its relationship to itself and to all other cell species of type Y. The joining
parameters, J(XX) and J(XY), determine the extent of cell X moving toward another
cell X or Y in a von Neumann neighborhood. The breaking parameters Py(XX) and
P5(XY) determine the extent of disruption of adjacent cells occupied with like or
unlike ingredients. The movement probability, P,, determines the extent of any
movement. Thus, for an enzyme cell, P\; =0 would designate a stationary enzyme. The
CA model selected is asynchronous. Cells compute their states one at a time. In our
study, all three types of probabilities were assumed equal to unity: P;=Pg=Py=1.
This means that all cells may interact, join, and break apart with equal probability. Only
the cells involved in a specific state change, i.e., enzyme —substrate (ES) — enzyme —
product (EP), are endowed with a state-change-probability rule, defined by the
transition probability P,, which describes the probability of an ES pair of cells changing
to an EP pair of cells. It may be regarded as a measure for enzyme activity or efficiency
[8], terms that will be interchangeably used in this paper. The collection of rules
associated with a network species represents, thus, a profile of the structure of that
species and its relationship with other species, within our definition of a molecular
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system. By systematically varying the rules, we can develop a profile of configurations
reflecting the influences of different structures. We will follow the general method used
by Kier and Cheng [5] in setting up a CA model of enzyme activity.
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Fig. 1. a) The MAPK signaling cascade [9]. Dashed lines indicate catalyst action. b) The corresponding set of

cascade enzymatic reactions. A=MAPKKK, B=MAPKKK*, C=MAPKK, D =MAPKK-P, E=MAPKK-PP,

F=MAPK, G=MAPK-P, and H=MAPK-PP (see also Table I). E3 and E4 are the MAPKK- and MAPK-

proteases, respectively, and the hypothetical enzymes E1 and E2 affect the reactions of MAPKKK activation

and deactivation. The product B of the first reaction is an enzyme that activates the second row of forward

reactions in the cascade. At its turn, the product of these phosphorylation reactions activates the forward
reactions in the third cascade row.
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3. The CA Modeling of the Mitogen-Activated Protein Kinase Signaling Pathway.
We have begun our analysis of cell networks with the mitogen-activated protein kinase
(MAPK) cascade as an example of importance, studied recently by different numerical
methods (differential equations, stochastic approaches, efc.) based on reaction-rate
equations [9-16]. This is a signaling pathway in which signals from the plasma
membrane are relayed to targets in the cytoplasm and nucleus. Considerable progress
has been achieved during the last decade in elucidating the detailed molecular
mechanism of this pathway [12]. Aiming to test the applicability of the CA method to
pathways and networks, we limited our study to the major cascade part of the MAPK
pathway, which has been incorporated in all biochemical models proposed so far. The
cascade is shown schematically in Fig. I,a, as given by Huang and Ferell [9]. The set of
the MAPK cascade biochemical reactions implies the detailed reaction mechanism
shown in Fig. 1,b.

The CA model is built from the above reaction mechanisms. The three substrates
MAPKKK, MAPKK, and MAPK, and the four enzymes involved have some
prescribed initial concentrations (assigned a number of CA cells). We have system-
atically altered the initial concentrations of the above substrates, as well as the
efficiencies of the enzymes. The basic variable was the concentration of MAPKKK,
which was varied within a 25-fold range from 20 to 500 cells. This matches the 25-fold
range of variation of E1 used as an initial stimulus in the original study [9]. The
concentrations of MAPKK and MAPK were kept constant (500 or 250 cells) in most of
the models. The four enzymes, denoted by E1, E2, E3, and E4, were represented in the
CA grid by 50 cells each. In one series of models, we kept the MAPKKK initial
concentration equal to 50 cells, set the transition probabilities of three of the enzymes

350
300
250

200

Ingredient concentration

1 5 9 13 177 2 25 29 33 37 41 45 49 53 57
Time (humber of iterations / 100)

Fig. 2. Temporal change in ingredient concentrations from t =0 to the steady state reached for less than 15000
cellular-automata iterations (see Fig. 1,b for the full names of the ingredients A—H)
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to P.=0.1, and varied the probability of the fourth enzyme between 0% and 100%. In
another series, all enzyme transition probabilities were kept constant (P.=0.1),
whereas the concentrations of substrates were varied. In a third series, both substrate
concentrations and enzyme efficiencies were varied. Recorded were the variations in
the steady-state concentrations of the three substrates MAPKKK, MAPKK, and
MAPK, and those of the products MAPKKK*, MAPKK-P, MAPKK-PP, MAPK-P,
and MAPK-PP. An illustration of the system time changes from =0 up to reaching a
steady state after a certain number of CA iterations is shown in Fig. 2. The parameter
values used were as follows. Initial concentrations: [A],=100, [C],=[F],=300;
[E1],=50, [E2],=[E3],=[E4],=10 cells; enzyme transition probabilities: P.=0.1.

The immediate question to answer in analyzing a signaling pathway is whether the
model reproduces the amplification of the signal through the cascade. The quantitative
aspects of signal amplification are also important in the examination of the overall
cascade sensitivity to a variety of initial conditions. It was particularly important to
show that CA models can reproduce the sigmoidal character of the concentration
change of the basic MAPK cascade species. In addition, as a CA model for a future,
more-general analysis of networks and pathways, this study was also focused on the
patterns of substrate and product variations, and the ways to control these patterns
toward a desirable outcome. The change in substrate concentration predetermines the
outcome of the reversible reactions. The change in enzyme concentration affects only
the rate at which the reaction reaches the equilibrium state. However, in non-
equilibrium reactions, which frequently occur in biochemistry, different enzyme
concentrations produce different steady states, thus influencing the degree of
conversion of substrates into products. The goal of this work was to show that the
CA method provides an adequate answer to all these questions.

4. Results and Discussion. — 4.1. Modeling Enzyme Activity. Upgrading or
downgrading enzyme activities are one of the typical ways cells react to stress and
interactions with pathogens. We studied systematically the variations of one of the four
enzymes E1 to E4 at constant concentrations of the substrates MAPKKK, MAPKK,
and MAPK, assuming constant efficiency of the other three enzymes. This type of
pathway is illustrated in Fig. 3 with the variation of the MAPKK protease (E3 in
Fig. 1), which reverses the two-step reaction of MAPKK phosphorylation. It is shown
that the concentration of both the MAPKK and MAPK diphosphates (E and H, resp.,
in Fig. 3) passes through a maximum near a relatively low enzyme-transition
probability (P~0.02). At the maximum point, the concentration of MAPK-PP
reaches over 80% of its possible value, whereas that of MAPKK-PP is slightly over
50%. This shows the potential for a strong influence on the concentrations of the two
diphosphates in the MAPK cascade, and, thus, on the amplification of the cascade
signal, by inhibiting the MAPKK protease. In contrast, the level of steady-state
concentrations of the two monophosphates (D and G in Fig. 2) is not sensitive to the
activity of the enzyme modeled, except for the extreme case of very strong inhibition
(P—0.001).

More results from the modeling of the variations in the four enzyme efficiencies are
presented in Table 2. They illustrate the possibility to use the identified patterns for
biochemical control of the MAPK cascade pathway. Similar patterns have been
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Fig. 3. Influence of the MAPKK-protease efficiency (P(E3)) on the steady-state concentrations of different

MAPK cascade species (for abbreviations, see Table I). Model parameters: enzyme efficiencies P, (E1) =P,

(E2) =P, (E4) =0.1, substrates initial concentration: [A],=50, [C],=[F],=500. The maximum amplification

of cascade signal (the maximum concentration of H) at these conditions is obtained for enzyme E3 efficiency

within the range of P,(E3)=0.01-0.02. Similar ranges are obtained for the optimal efficiency of enzymes E2
and E4 (not shown).

observed in studies based on numerical solutions of the kinetics differential equations
[9][12]. The potential for downgrading or upgrading the products and substrates
concentrations by inhibiting the corresponding enzymes is illustrated in Table 3.

Table 2. Effects of Modeling Enzyme Inhibition in the MAPK Cascade by Decreasing the Variable Enzyme
Efficiency from 0.5 to 0.02. The other three efficiencies equal to 0.1 were kept constant, at initial concentrations
of MAPKKK, MAPKK, and MAPK equal to 50, 500, and 500, resp.

Enzyme Species Concentration change Change [%]
E1l MAPK-PP 330 — 100 —70
MAPKK-PP 140 — 25 —82
MAPKK 220 — 400 +82
MAPK 60 — 230 + 383
E2 MAPKK 395 —210 —47
MAPK 260 — 60 =77
MAPK-P 140 — 340 +243
E3 MAPKK 420 — 95 =77
MAPK 300 — 25 -9
MAPK-PP 80 — 400 +500
E4 MAPK-PP 100 — 430 +430
MAPK 290 — 10 -97




240 CHEMISTRY & BIODIVERSITY - Vol. 2 (2005)

Table 3. Inhibiting Enzymes EI to E4 as a Tool for Controling the MAPK Pathway

Objective Action Validity range
Decrease [ MAPK] Inhibit E2, E3, E4 P=0.9—-0.02
Increase [MAPK] Inhibit E1 P=09-0
Decrease [ MAPK-PP] Inhibit E1 P=09-0
Increase [ MAPK-PP] Inhibit E3, E4 P=09-0.02
Decrease [ MAPKK] Inhibit E3 P=0.9—-0.02
Increase [ MAPKK] Inhibit E1 P=09-0
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Fig. 4. a) Semi-logarithmic plot of the steady-state concentrations of substrates’ and products’ dependence on the

initial concentration of MAPKKK in MAPK cascade (for abbreviations, see Table I). Model parameters:

transitional probabilities P,(E1) = P(E2)= P,(E3)= P, (E4)=0.1; initial concentrations [C],=[F],=500.

b) Predicted relative stimulus/response curve for MAPK-PP with input stimulus (the MAPKKK initial

concentration) expressed in multiples of ECs,. The slope of the MAPK-PP curves in both figures evidences for
the significant cascade-signal amplification.

More generally, these analyses indicate the potential of the CA modeling of the
patterns of down- and up-regulation of cellular pathways. This might contribute to the
design of drugs with reduced side effects by selecting as drug candidates the species
whose inhibition is expected to have the least effect on the other molecules. Thus, a
drug designed to decrease [MAPK] in the analyzed system would best be an E2 enzyme
inhibitor.

4.2. Varying the Concentration of MAPKKK at Constant Enzyme Efficiencies.
Another line of analysis is to study how the variation in the initial concentration of
MAPKKK, which is the major downstream effector, affects the MAPK cascade, when
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keeping the enzyme activity constant. Fig. 4,a shows the dynamics of the concen-
trations of all substrates and products for a 25-fold increase of [ MAPKKK], from 20 to
500 cells, as well as at constant efficiencies of E1 to E4 (P(E)=0.1), and at constant
initial concentrations of MAPKK and MAPK equal to 500 cells. In the semilogarithmic
plot of Fig. 4,a, the MAPK-PP and MAPKK-PP ascending curves are sigmoidal, as are
the descending curves of the respective substrates MAPK and MAPKK, respectively.
The sigmoidal pattern is also manifested in Fig. 4,b, with the predicted stimulus/
response MAPK-PP curve in semilogarithmic plot, the input stimulus in which is
expressed in multiples of ECsy, i.e., the concentration of MAPKKK that produces 50%
maximal response. This behavior is typical for alosteric enzymes that do not obey
Michaelis— Menten kinetics, and, thus, evidences for a cooperative effect of cascade
enzymes. Our finding confirms the result of Huang and Ferell [9], obtained by
numerically solving the differential rate quations, where the concentration of E1 was
selected as a basic variable.

4.3. Simultaneous Variation of MAPKKK Concentration and Enzymes Competence.
The dynamics of the MAPK cascade signaling pathway can be analyzed in more detail
with simultaneous variation of substrate concentrations and enzyme efficiencies,
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Fig. 5. Contour plot of the MAPK-PP steady-state concentration at variable MAPKKK initial concentration and

variable MAPKK-protease efficiency. Model parameters: enzyme efficiencies P.(E1) = P,(E2) = P,(E4)=0.1;

initial concentrations [MAPKK],=[MAPK],=500. The plot shows that the optimal condition for obtaining

the highest MAPK-PP contour level of 400 cells is arrived at P,(E3) > 0.02. Within this range of probability

values, the cascade-signal amplification, as assessed from the MAPK-PP contour lines, increases with the

increase in the initial stimulus (MAPKKK initial concentration). At a constant MAPKKK value higher than 50
cells, the signal amplification passes through a maximum, as was shown in detail in Fig. 3.
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expressing the results in contour plots (Fig. 5). We varied [MAPKKXK] within a 25-fold
range (20, 50, 125, 250, 500 cells), keeping [MAPKK] and [MAPK] at a constant level
of 500 cells. The variable enzyme efficiency was studied within the 900-fold range from
0.001 to 0.9, keeping the other enzymes efficiencies at a level of 0.1. We have performed
only a few calculations with P, = 0.001, because the results have shown that the steady-
state concentrations are very close to the initial parameter values. Thus, with initial
concentrations of MAPKKK, MAPKK, and MAPK equal to 50, 500 and 500 cells,
respectively, we have obtained, after 5000 iterations for 50 runs, the following average
values: 49.5 £ 0.6, 493.6 £ 5.4, and 486.1 + 14.3, respectively. In the remaining trials, we
approximated the results for P,=0.001 to the initial parameter values.

Varying [MAPKKK], and E1 efficiency (not shown) did not provide surprising
results, because both variables increase the yield of reaction products. Yet, the CA
models showed a pattern of dominance of the concentration of substrate A over E,
efficiency. Thus, at [MAPKKK],=20 cells, the 45-fold increase in E1 activity from 0.02
to 0.90 results in only approximately a 4.5-fold increase in the MAPK — MAPK-PP
conversion ratio. In contrast, even at relatively low activity of E1 (P,=0.02), the
increase of [MAPKKK], from 20 to 250 (12.5-fold) increases the production of MAPK-
PP from 50 to 350 (7-fold; Fig. 6).

Steady-state concentration

log [MAPKKK],

Fig. 6. Semi-logarithmic plot of the steady-state concentrations of substrates and products in the MAPK signaling

cascade vs. initial concentration of MAPKKK (for abbreviations, see Table 1). Model-optimized parameters:

enzyme efficiencies: P(E1)=0.1, P.(E2)=P.(E3)= P.(E4)=0.02; initial concentrations [C],=[F],=500

cells. At the very low MAPKKK initial concentration of only 10 cells, 93% of the dose maximum response is
reached.

The variation of the activities of enzymes E2, E3, and E4 produces contour plots
with interesting features. This is illustrated for enzyme E3 in Fig. 5, where the contour
lines show levels of constant steady-state concentration of MAPK-PP (the level of the
cascade-output signal). The enzyme effect on the yield of MAPK-PP passes through a
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maximum at P, (E3)=0.02 to 0.1. The decrease in the MAPK-PP production is
expected when E3 becomes more active, because this enzyme reduces the concen-
tration of MAPKK-PP, which catalyzes MAPK phosphorylation. However, the
increase in the MAPK-PP concentration within the P,(E3) range of 0.001 to 0.02 of
enzyme activity, for the broad range of [MAPKKK] > 25 cells, is a trend that hardly
could be anticipated. One can derive from the contour plots the information that
suppressing the activity of E2, E3, and E4 enzymes to a level obtained at a transition
probability P, of 0.01 to 0.02, would enable reaching 80% of the maximum MAPK-PP
concentration at relatively low concentrations of MAPKKK. A further maximization
of the MAPK-PP signal could result from a more-favorable combination of the four
enzyme efficiencies, namely, a high one for enzyme E1, and low ones for enzymes E2,
E3, and E4, as follows from the patterns described above. Such a combination is, e.g., P,
(E1)=0.1, P, (E2)=P, (E3)=P, (E4)=0.02 (see Fig. 6). Conversely, a substantial
inhibition of these enzymes (e.g., at P.>>0.02) would minimize the cascade-signal
amplification.

Concluding our analysis, we would like to emphasize that although we reproduced
in our study the main results of the Huang— Ferell differential-equation model [9]
concerning the cascade-signal amplification and the enzymes alosteric effect, the CA
modeling of the MAPK cascade pathway reported here was not aimed at exact
reproduction of previous work. Rather, it was aimed to demonstrate the potential of
the CA method to model basic patterns in pathways of interest, and to indicate the ways
to control the pathway dynamics by selective enzyme inhibition and concentration
variation. Work is in progress to extend this methodology to larger networks.
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Peterson, VCU, for helpful discussions. D. B. acknowledges support from NIH (grant No. 5-22405).

REFERENCES

[1] S. Wolfram, ‘A New Kind of Science’, Wolfram Media, Champaign, IL, 2002.
[2] A. Neuforth, P. G. Seybold, L. B. Kier, C. K. Cheng, Int. J. Chem. Kinet. 2000, 32, 529.
[3] D. Bonchev, in ‘Handbook of Proteomics Methods’. Ed. M. Conn, Humana, New York, 2003, p. 451.
[4] L.B. Kier, C. K. Cheng, B. Testa, P. A. Carrupt, J. Mol. Graphics 1996, 14, 227.
[5] L.B. Kier, C. K. Cheng, J. Mol. Graphics 2000, 18, 29.
[6] J.R. Weimar, in ‘Cellular Automata’, Eds. S. Bandini, M. Tomasini, B. Chopard, Springer, Berlin, 2002,
p- 294.
[7] T. Toffoli, Physica D 1984, 10, 117.
[8] R. Lumry, R. B. Gregory, in ‘The Fluctuating Enzyme’, Ed. G. R. Welch, Wiley-Interscience, New York,
1986.
[9] C.-Y.F. Huang, J. E. Ferell, Proc. Natl. Acad. Sci. USA 1996, 93, 10078.
[10] U.S. Bhalla, R. Iyengar, Science 1999, 283, 381.
[11] B. N. Kholodenko, Eur. J. Biochem. 2000, 267, 1583.
[12] F. A. Brightman, D. A. Fell, FEBS Lett. 2000, 482, 169.
[13] T.S. Shimizu, D. Bray, in ‘Foundations of Systems Biology’, Ed. H. Kitano, MIT Press, Cambridge, MA,
2001, p. 213.
[14] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, G. Miiller, Nat. Biotechnol. 2002, 20, 370.
[15] M. Hatakeyama, S. Kimura, T. Naka T. Kawasaki, N. Yumoto, M. Ichikawa, J.-H. Kim, K. Saito, M. Saeki,
M. Shirouzu, S. Yokoyama, A. Konagaya, Biochem. J. 2003, 373, 451.
[16] T.S. Shimizu, S. V. Aksenov, D. Bray, J. Mol. Biol. 2003, 329, 291.

Received September 27, 2004



