
Parsing Massive Output - 1

VCU Bioinformatics and Bioengineering Summer Institute
Maintaining Continuity in a Genome Project

Notes: Using Blast to compare sets of protein: Parsing massive output

I. Overview of problem
II. Blast: A sequence comparison tool
III. Figuring out what BlastParser produces
IV. Modifying BlastParser

I. Overview of problem
The Scenario presents a common problem for those who try to keep up with genome sequencing
projects (both the organizers and the users of the information): How do you integrate information
derived from an earlier version of the sequence with a later version? It may sound pretty easy.
Even the earliest version of the sequence is 99% correct, though incomplete. What's the
problem?

Imagine that you, an archaeologist from the 30th century, recover from a sea-worn chest shreds
of thousands of copies of Moby Dick, from a boat evidently carrying the cargo of a book
publisher. You lovingly piece together the text as best you can. You treasure each of the resulting
pages and pour over them, writing liberally in the margins. A colleague, who uses even more
shreds from the chest, is able to do better, recreating whole chapters. This version makes more
sense, and you want to copy your notes to it.

Seems straightforward enough, just a matter of comparing each of your pages with pages from
the more complete copy. But, no. The two versions sometimes differ in how smudged words are
interpreted. Worse, the pages of the two versions are not always assembled in the same way
(owing in part to the ancient author's penchant for repetition -- is it 20 pages or 40 devoted to the
characteristics of the color white?).

Since you can't compare whole pages, you try sentences instead, taking each sentence of your
version and searching the other version until you find a match. This method is still imperfect:
sometimes even sentences are mangled and partially match multiple sites in the other version,
and sometimes your sentences find no match at all. (Perhaps there were some contaminating
fragments of Flipper, the Happy Dolphin, printed by the same publisher).

We will use the same method to match the content of one genomic assembly with a later, better
assembly, recognizing that the attempt will not be completely satisfactory. The strategy, then, is
to compare each protein sequence predicted from the sequence of the 2002 assembly of the
Streptococcus sanguis genome with those predicted from the recently assembled revised
sequence. Once protein matches have been made, annotation of protein predicted from the earlier
sequence can be transferred to the annotation of the new sequence.

The new sequence of S. sanguis has not been analyzed yet, however, and for this research
simulation we'll use two available versions of the genome of another organism, Cryptospiridium.
From the lessons learned in this test case, we (or at least one of us) may proceed to the real case
when the set of predicted protein becomes available.

Parsing Massive Output - 2

II. Blast: A sequence comparison tool
The workhorse in this strategy is Blast (for Basic Linear Alignment Sequence Tool), a program
that compares sets of sequences and finds the best alignments. It is the most widely used of any
bioinformatics program, usually in one of its many online incarnations (e.g., the implementation
made available by the National Center for Biotechnology Information). For our special purpose,
however, it is more convenient to run Blast on our own computers, where we may exert more
control over the process.

Now is the time to download Blast from NCBI, configure a database composed of the set of
proteins from a May 2003 assembly of Cryptospiridium, and use Blast to compare this database
with the set of proteins from an October 2003 assembly.

Today's webpage provides instructions on:

How to download Blast
How to set up a database of protein sequences for use by Blast
How to run Blast

The question arises, should you set up the database using the set of protein from the earlier
assembly or the later assembly? To answer this question, consider the problem at hand. You
want to connect work done on proteins found from an earlier assembly to proteins of the new
assembly. The way Blast (actually BlastAll) works is to take each protein in a file (the protein is
called the query sequence) and compare it against each protein of the database (called the
subject). If a match is found, it is reported. If not, Blast says "No match found". If every protein
predicted from the earlier assembly is also predicted from the later assembly, then it doesn't
matter which set is used to make the database. You might think that a later assembly ought to
have every protein predicted by the earlier assembly. Don't count on it. Either way will work, but
I advise you make the database from the later assembly.

SQ1. Suppose that some proteins you have annotated are not predicted in the new

assembly. How will the results differ if you use the proteins of the old assembly as the
database instead of as the query set?

OK, do it.

Warning: the running of Blast using these large protein sets will take a long time.
The exact time will depend on the speed of your machine, but I'd count on a few
hours. Why not spend that time going through the rest of these notes?

You wanted to know which proteins in the old assembly matched which proteins in the new
assembly. Blast has run for the required few yours, you have the answer you seek... somewhere
in a file of some tens of million characters. You could go through the file by hand, picking out
the proteins you're looking for, but since you can't seem to find a free 10-year block anywhere in
your schedule, you need another approach.

Still easy. You've come up with some free software, BlastParser (see today's web site), that
automates the process of doing just what you would do if you had the time: go through the output
of Blast and pick out just the names of each protein used in the comparison and what the
comparison found, in brief. Unfortunately, the program was written to work on comparisons of
two different sets of protein, not yours. You can't expect a free program to do exactly what you

Parsing Massive Output - 3

want, but it shouldn't be too difficult to modify it slightly to work on your comparisons. You
hope.

III. Figuring out what BlastParser produces
For starters, why not try running the program? Well, that could be dangerous. I wouldn't run a
program someone handed me without looking at it to see if it did anything I might regret later.
But trust me on this one and download BlastParser to your favorite directory, run perl
blastparser.pl, and stand back!

 [a moment of silence while you run the program]

... not as satisfying as one might have hoped, but not unexpected either:
Can't open 71vsnps.txt: No such file or directory

(If you got instead a message indicating that the parsed output was successfully stored, then you
can skip the next paragraph)

As I said, BlastParser was not written to work on your Blast comparison but on a different one.
Perl said it couldn't open something called 71vsnps.txt. I'll bet you don't have that file in your
directory. Moral: When you get a program, always ask for an accompanying data file on which
the program runs successfully. Go back to today's webpage, download 71vsnps.txt to your
directory and run the program again.

This time you should get a message indicating a successful completion of the task. Check out the
directory, looking for the newly created file called 71vsnps-out.txt. If you take a look at it,
you'll see that it contains some bioinformaticky looking things, gene names and such. That's
good. But you'll need to understand what the output means, and, most important, you'll need to
get the program to work on YOUR file, i.e. the output of blasting one Cryptospiridium protein
set against another.

We can look at the program -- we will look at the program --, but it might be easier to compare
the input and the output to get an idea of what comes from what. So bring up the input file
71vsnps.txt (Fig. 1) and the output file 71vsnps-out.txt (Fig. 2).

Putting the two together, I get the following color coded interpretation:

1. Query name: Some symbolic identification of a gene used to probe the database
2. Query description: Something in plain English
3. Query length: the length of the query sequence
4. Subject name: symbolic identification of a gene within the database similar to the

query
5. Subject description: something in plain English [A description ought to be there,

even though it's not]
6. Subject length: the length of that protein
7. E-value: The probability that a match of this quality might have arisen by chance

Items 4-6 are repeated if there is more than one match and omitted if there aren't any
matches.

Parsing Massive Output - 4

Does BlastParser do what you need it to do? Actually, it may do too much. You want to know
the best match between the two sets of protein. You're probably not very interested in the second
and third best matches provided by BlastParser. And you may not be sure at the moment exactly
what to do with those E-values. For now, you decide to accept the output format as-is.

SQ2. Speculate on what you might do with the information produced by BlastParser, given

the concerns described in the Scenario.

SQ3. Speculate exactly what, in plain English, the E-value "3e-069" might signify.

III. Modifying BlastParser
The time has come to make the program work on the file you generated from Blast. So, it will be
necessary to go into BlastParser and modify it to look for your file instead of the one it was built
for. Let's do it.

BLASTP 2.1.3 [Apr-1-2001]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= all0001 ID:6715 {-311 <--- 918} unknown protein
 (409 letters)

Database: Npunctiforme_protein
 7432 sequences; 2,397,140 total letters

>Contig647.revised.gene32.protein
 Length = 438

 Score = 256 bits (655), Expect = 3e-069
 Identities = 169/438 (38%), Positives = 235/438 (53%), Gaps = 45/438 (10%)

Query: 2 KFVRNIVILLSSLAAVLTVCENANAGKGSLNVGAK-IPPGQERQLLQYQLQNDGKGLHRI 60
 K VR I SSLA LT C++A A LN+G I G E + LQYQ+ N + L+++
Sbjct: 13 KAVRFATIAFSSLAVGLTTCQSAFA---QLNIGRYGIQQGLESEYLQYQINN--QNLNQM 67

etc for many megabytes... [I cut it off at about 50 kbytes]

Fig. 1. Output from Blast. First few lines from the file 71vsnps.txt. The colors are not in
the original file but are added here to aid comparison with the output file (Fig. 2).

all0001 ID:6715 {-311 <--- 918} unknown protein 409 647.032 438 3e-069
all0002 ID:2 {981 <--- 1718} unknown protein 245 647.030 213 6e-060

etc for many more lines

Fig. 2. Output from BlastParser. First two lines from the file 71vsnps-out.txt. The colors
are not in the original file but are added here to aid comparison with the input file (Fig. 1).
Each field is separated by a tab (not shown).

Parsing Massive Output - 5

Use PerlEditor or Notepad to examine BlastParser and try to find the section of code that
identifies the name of the file to be parsed. Happily, the program very kindly put neon lights
around the pertinent section, and right below the comment

OPEN THE BLAST FILE

there's a very suspicious two lines of code:
my $blastPath = "71vsnps.txt";
open BLAST, "<$blastPath" or die "Can't open $blastPath: $!\n";

Obviously, that's where the error message you got came from.

SQ4. Change $blast_path so that it is assigned the correct file name, i.e. the one created
when YOU ran Blast.

Now run the program again, and examine the results... That's more like it! But wait... Comparing
the output with the file produced by BlastAll (do the comparison), it looks like I'm getting the
query name, the query description, and the query length, but nothing for the subject. Could it be
that there are NO matches between the two sets of protein? I doubt it. More likely, the program
runs fine with the other Blast output, but there's something perhaps subtly wrong that we need to
fix before it can run with OUR Blast output. Perhaps you were afraid of that.

No time like the present. Let's try to get a minimal idea how this program works and what might
need fixing. First, go to the Main Program section.
 $line = <BLAST>; # Read first line
 while (defined $line) { # Only if not end of file
 if ($line =~ /^Query=/) { # If 'Query=' matches beginning of line...
 Write_previous_query_info(); # ... end previous query record
 Start_new_query();} # ... and begin a new one
 elsif ($line =~ /^>Contig/) { # If '>Contig' matches beginning of line...
 Record_subject() } # ... save hit information
 $line = <BLAST>;} # Read next line

There's much here that's mysterious, but so long as I don't get dragged down by that, there's also
much here that I recognize. For example, /^Query=/. Never mind the / and ^, I recognize
Query=. That appears in the output whenever query information is presented. And I recognize
>Contig. That appears in the output -- the output that BlastParser was designed for -- and is
followed by subject information. BUT >Contig DOESN'T APPEAR IN YOUR BLAST
OUTPUT! That's clearly a problem. You need to figure out what signals the presence of subject
information in your output and modify the program accordingly.

SQ5. Have any idea how to change the program so that it recognizes the beginning
of the subject line?

Even if you make an appropriate change, you're going to find that the program STILL doesn't
work. Why? You'll have to look at the parts of the program that actually do the work: the
routines called start_new_query and record_match. There's a lot mysterious here, but with
surprisingly little explanation, you can make a good deal of sense out of this code. The important
thing is to figure out what questions you need to ask:

Parsing Massive Output - 6

• How is relevant information in the input file recognized?
Answer: Through regular expressions, the code between two / as in:
 ($subject_length) = ($line =~ /Length = (\d+)/);

• How is the recognized information in the input file captured?
Answer: Through capturing within regular expressions, as in:
 $subject_description = $3;

It seems that the time is ripe to learn about regular expressions. The next set of notes will take
you through this topic.

