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VCU Bioinformatics and Bioengineering Summer Institute 
The Origin of Human Genetic Variability from Cross-species Comparisons 

Notes: Alignment of DNA sequences 
Outline: 
 I. Relationship between Scenario and sequence alignment 
 II. Different ways of aligning sequences 
 III. The Smith-Waterman algorithm for local alignments 
 IV. Word-based algorithms (FastA and Blast) 
 
I. Relationship between Scenario and sequence alignment 
Take a look at the Scenario and DO it if you haven’t already. In this scenario, you ask BlastN 
whether short DNA sequences in human chromosome 21 known to have variable positions might 
be present in a chimpanzee chromosome 22. Imagine the enormity of your request. You're asking 
a computer program to go through about 47 million nucleotides determine whether your SNP 
sequence is not merely identical to one of them but close enough. If it were merely looking for 
identity, then you could imagine a simple program that would do the job. But “close enough” – 
what’s that? 

How does BlastN decide that two sequences match? The program declares a match if it can align 
the two sequences according to certain criteria. Of the two pairs of sequences below, it seems 
pretty obvious that the first pair match well (identity fraction of 16/17) and the second pair match 
not much better than what you’d expect from two random sequences (identity fraction of 6/21). 

 a. AATATTGACGCTTTACT b. TTTACTACATCAGTCCATCGG 
  |||||| ||||||||||   |   | |    | |    | 
     AATATTCACGCTTTACT  GTAGTTCCGATGGACTGATGT 

But the latter pair actually isn’t a bad match. If you invert the second sequence (GTAG…ATGT → 
ACAT…CTAC by reading the implied second strand 5' → 3') and shift it a bit you get: 
   b. TTTACTACATCAGTCCATCGG 
          ||||||||||||||| 
          ACATCAGTCCATCGGAACTAC 

Not a bad match either! Clearly we need some machine help, to contort the sequences in all 
possible ways and to do this for the several million possible matches amongst known sequences. 
Here you are carping that BlastN didn’t give you the answer you wanted... you should instead 
marvel that it gave you any answer at all! 

II. Different ways of aligning sequences 
All BLAST (Basic Local Alignment of Sequences Tool) knows how to do is to align two 
sequences as best it can and score its best effort. How you interpret that information is up to you. 
There are many ways to consider the problem of sequence alignment: 

A. Alignment of pairs of sequences vs multiple sequence alignment 

Alignment of pairs of sequences (which is what Blast does) is a much easier problem than 
multiple sequence alignment. The former is useful in identifying sequences. The latter is useful 
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in finding conserved regions in a set of similar sequences, an example of which we’ll encounter 
in Scenario 5. We’ll consider here only pairwise alignment. 

B. Global alignment vs local alignment  

Global alignment compares two sequences throughout their lengths. This is useful if you have 
reason to believe that the two sequences ought be similar from one end to the other. This is 
clearly not the case when you’re comparing a short DNA sequence against an entire genome, and 
it is seldom the case with protein comparisons either. We’ll consider here only local alignment, 
in which the ends of the two sequences being compared are not forced into the alignment. 

C. Dot matrix analysis vs the dynamic programming algorithm vs word methods  

One of the earliest tools used in the 
computational analysis of protein and 
DNA sequences was Dot matrix analysis, 
a simple but powerful method for 
detecting even weak similarities. In the 
example shown in Figure 1, windows of 
12 nucleotides in width are moved along 
the sequences of two genes. Whenever 
the alignment of the two windows 
presents at least 8 matches, a dot is 
placed at the position of the matrix 
corresponding to the positions of the 
windows in the gene. Even though the 
similarity between the two genes is pretty 
weak in certain regions, a human has no 
trouble detecting the broken diagonal line 
amidst the noise, indicating an overall 
similarity between the two genes from 
beginning to end. 

Using this dot matrices, one can see at a glance regions of similarity between two sequences. 
However, computers don’t know how to glance, and so the method requires a human to 
scrutinize every comparison and connect the dots. Since this makes the method unusable for 
mass comparisons (e.g. a sequence against GenBank), we’ll not consider it further here.  

Dynamic programming is a mathematical technique designed to aid in decision making by 
considering the last decision and working backwards. That’s all you’re going to hear on the 
subject in this course.1 The Smith-Waterman algorithm for local alignments, discussed below, is 
based on dynamic programming. The algorithm is guaranteed to give the best local alignment 
between two sequences.  

Word methods, discussed below, are short cuts that allow the Smith-Waterman algorithm to run 
in a reasonable length of time. Blast and FastA use such methods. The downside is that the 
algorithm is no longer guaranteed to find the best match. But it almost always does anyway.  

                                                 
1 You can find out more (and everything I know on the subject) by going to http://plus.maths.org/issue3/dynamic/ 

Figure 1: Dot matrix analysis of the P genes from phage P2 
(horizontal axis; 1776 nucleotides left-to-right) and phage CTX
(vertical axis; 1785 nucleotides top-to-bottom). Dots appear at 
positions where at least 8 out of 12 consecutive nucleotides of 
one gene match the other. 
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 A A G A T A C C T A C A 
T 0 0 0 0 1 0 0 0 1 0 0 0 
T 0 0 0 0 1 0 0 0 1 0 0 0 
A 1 1 0 1 0 2 0 0 0 2 0 1 
G 0 0 2 0 0 0 0 0 0 0 0 0 
A 1 1 0 3 0 1 0 0 0 1 0 1 
T 0 0 0 0 4 0 0 0 1 0 0 0 
A 1 1 0 1 1 5 0 0 0 2 0 1 
A 1 2 0 1 0 2 3 0 0 1 0 1 
G 0 0 3 0 0 0 0 1 0 0 0 0 
C 0 0 0 1 0 0 1 1 0 0 1 0 
C 0 0 0 0 0 0 1 2 0 0 1 0 
T 0 0 0 0 1 0 0 0 3 0 0 0 
A 1 1 0 1 0 2 0 0 0 4 0 1 
G 0 0 2 0 0 0 0 0 0 1 2 0 
A 1 1 0 3 0 1 0 0 0 1 0 3 
G 0 0 2 0 0 0 0 0 0 0 0 0 

Figure 2: Scoring table for query vs subject1 

III. The Smith-Waterman algorithm for local alignments 
The Smith-Waterman algorithm examines every possible alignment of a sequence with respect to 
another, much like a dot matrix but with gaps allowed, scoring the alignments according to a set 
of penalties for mismatches and gaps and a reward for matches. The algorithm proceeds in two 
stages. First, two sequences are considered from left to right, producing a table of scores of 
possible alignments. Second, the two sequences are considered from right to left, starting with 
the match that ended with the highest score and retracing the steps that led to that match. The 
details are most easily understood by example. 

Suppose you want to find the best alignment of query sequence within a subject sequence: 

 Query: AGATACCTACA Subject1: TTAGATAAGCCTAGAG 

We’ll use the (rather atypical) scoring parameters of: 

  Match reward = +1  Gap opening penalty = -3 
 Mismatch penalty = -2  Gap extension penalty = -2 

With these scoring parameters, the alignment: 
   AAGATA--CCTACA  
    |||||  |||| | 
  TTAGATAAGCCTAGAG 

would produce the score of: 

 (10 matches)(+1) + (1 mismatch)(–2) +  (1 gap opening)(–3) + (1 gap extension)(–2) 

 = +3 

(note that the alignment begins with the first match shown, not at the beginning of the sequence). 
Negative scores are not allowed: any score below zero is set to zero.  

The scoring table for this comparison would 
look as shown in Figure 2. Note that the first 
row and first column consist solely of one’s 
and zero’s because at the beginning of a 
comparison, the score is either one (the two 
characters match) or zero (they don’t). The 
score for all other boxes is taken from the 
maximum of three choices: 

a. No gap: Take the score in the box 
diagonal and to the upper left and either 
add a match reward or mismatch 
penalty, as appropriate (or zero if the 
sum is negative). 

b. Gap in query: Take the score in the box 
to the left and add a gap opening 
penalty or a gap extension penalty, as 
appropriate (or zero if the sum is 
negative). 
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c. Gap in target: Take the score in the box above and add a gap opening penalty or a gap 
extension penalty, as appropriate (or zero if the sum is negative). 

From two examples you might be able to see how the scores are figured out.  

• (rule a) The score of two in the eighth row and second column arises because the 
match of A with A is preceded by another match with no gap. The red line highlights 
the connection.  

• (rule c) The score of 2 in the eighth row and sixth column arises because of the 
insertion of a gap in the target (note that the match between A and A at that position 
is irrelevant: the A in the target is already used). 

Once the scoring table is filled out, the first stage of the 
algorithm is complete. 

SQ1. Fill out the scoring table to the right, using the same 
scoring parameters in the preceding example. Put in 
both scores and connecting lines. 

SQ2. Make just one change in the query sequence used in 
Figure 2 so that the first long diagonal match 
(AGATA) is connected to the second long diagonal 
match (CCTA). 

The second stage of the algorithm produces the best match. Start with the box that has the 
highest score (highlighted in green in Figure 1). From that box, follow the lines backwards until 
a zero is reached. From that path, read upwards to get the query sequence and leftwards to get the 
target sequence. Any time a horizontal line is encountered, insert a gap in the query sequence, 
and any time a vertical line is encountered, insert a gap in the target sequence.  

The match found from the scoring table in Figure 2 would thus be: 

 Query: AGATA 
  ||||| 
 Target: AGATA 

SQ3. Would the change you proposed in answer to SQ2 produce a higher score than 5? 

SQ4. Make two changes in the query sequence used in Table 1 to produce a higher score. 

SQ5. What would be the effect on the original Figure 1 of changing the open-gap-penalty 
from 3 to 2? Based on this observation, how would you modify the claim that the 
Smith-Waterman algorithm finds “the best local alignment between two sequences”?  

SQ6. How big would the scoring table have to be to accommodate a comparison of a 1000-
nucleotide sequence and the 4.6 million nucleotide genome of E. coli K12? 

Your answer to SQ6 should highlight the problem with the Smith-Waterman algorithm. The 
requirement for an mxn matrix (where m is the length of the query sequence and n is the length 
of the target sequence) is overwhelming for large sequences. 
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IV. Word-based algorithms 
The Smith-Waterman algorithm gives the best local match (according to the specific set of 
parameters used), but it does so by demanding huge chunks of computer memory and time, 
making the method impractical for use in comparisons of sequences with large databases.2 
Routine searches demands an alternative method to reduce these requirements. Two programs, 
Blast and FastA, take similar shortcuts to complete searches about 1000-times faster than the 
Smith-Waterman algorithm. The main trick comes from the realization that the majority of the 
scoring matrix calculated by Smith-Waterman is stray zeros and ones of no use to the ultimate 
best match. Blast and FastA attempt to calculate only those parts of the matrix that bear on the 
question of how far a good match should extend. 

The algorithm used by Blast and FastA proceeds by the following steps: 

1. Filter the query sequence to remove repetitive regions (FastA doesn’t do this and it is 
optional in Blast). Filtering is explained at the end of this section. 

2. Find all matches between the query sequence and the target sequence 
In Perl-speak: foreach word (beginning of query .. end of query) 

a. Extract a subsequence from the query, called a word, by sliding a window along 
the length of the query, as shown in Figure 3. 

b. Find an exact match of the word in the target sequence. If no match is found, go 
back to Step a and get the next word from the query. If a match is found, continue 
to Step c. 

c. Use a modified Smith-Waterman algorithm to extend the word match in both 
directions, according to a set of reward and penalties. 

d. Calculate a score related to the probability of finding a match as good or better 
than the final match. 

e. Save those matches whose scores are better than a given threshold. 

f. Repeat Steps a through e until there are no more words remaining to try within 
the query. 

3. Rank the matches by their scores. 

4. Print out the top matches. 

                                                 
2 Recently, tricks have been used to enable the Smith-Waterman algorithm to run on very fast computers 
to do exhaustive searches of databases, catching some hits that Blast misses, but this facility is not 
available to the general public. 

(Iteration 1) Query: AATATTGACGCTTTACTACATCAGTCCATCGGAAGTACGTTGTATAATAA... 

                           word: AATATTGACGC 
(Iteration 2) Query: AATATTGACGCTTTACTACATCAGTCCATCGGAAGTACGTTGTATAATAA... 

                            word: ATATTGACGCT 
Figure 3: Extraction of words from query sequence, beginning from the beginning of the sequence and
proceeding by sliding the window to the right, to the end. 
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This procedure saves an enormous amount of memory and calculation time, as shown in 
Figure 4. The attempt to extend a word-match proceeds only until a zero score is found in a cell. 
Thus the number of cells with scores that need to be calculated is bounded by 0 scores. Of course 
it is possible that a good match might be missed by the trick of searching first for exact matches. 
One can guard against this possibility by reducing the size of the word, but that increases the 
number of word-matches and slows down the search. At the limit case, where the word size is 
one nucleotide, the procedure is essentially the same as the full Smith-Waterman algorithm. 

SQ7: What word size would you use in order to detect the match shown in Figure 2? 
Blast filters queries before extracting words from them. This is to guard against the large number 
of spurious matches that usually result from searches using queries containing regions like: 

 AAAAAAAAAA…      or      CACACACACACA… 

Which are found in biological DNA sequences in frequencies higher than one would find in a 
random sequence. Such regions are said to have low complexity. Blast accomplishes filtering by 
masking out low complexity regions, replacing the nucleotides with “N”, which match nothing in 

 

Figure 4: Cells of Smith-Waterman scoring table that need to be calculated. Shown is just a tiny 
portion of an mxn scoring table of a query m nucleotides long compared to a target n nucleotides long. 
The 11-nucleotide word match is highlighted in green. Scores for red cells and blue cells are calculated 
to determine how far the match may be extended in the forward direction and backward directions, 
respectively. Since 11-nucleotide exact matches are quite rare, a very small fraction of the table must 
be calculated. 
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the target sequence. Blast can also filter for common repetitive sequences in mammalian DNA. 
By default, many implementations of Blast filters queries, but it is possible to turn filtering off or 
specify special filtering.   

SQ8: I took from GenBank a random piece of noncoding human DNA and used BlastN to 
find similar sequences. You do the same thing: 

a. Get to BlastN (nucleotide vs nucleotide) in the NCBI site (see Links page in course 
website). 

b. Put in the Search box the accession number AF397423. 
c. Type 2041 in the From: box and 5040 in the To: box. 
d. Submit this sequence in three ways: 

1. On the Choose filter line, specify Low complexity (default); click on BLAST. 
2. On the Choose filter line, specify Human repeats; click on BLAST. 
3. Remove all checks from the Choose filter line; click on BLAST. 

e. Compare the output: What matches were found in one search but not another? Why? 
(More on this later!) 


