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Severe acute respiratory syndrome (SARS) is a recently described illness of
humans that has spread widely over the past 6 months. With the use of detailed
epidemiologic data from Singapore and epidemic curves from other settings, we
estimated the reproductive number for SARS in the absence of interventions
and in the presence of control efforts. We estimate that a single infectious case
of SARS will infect about three secondary cases in a population that has not yet
instituted control measures. Public-health efforts to reduce transmission are
expected to have a substantial impact on reducing the size of the epidemic.

SARS is a recently described illness of humans
with a high case-fatality rate (1) that has spread
widely since November 2002. Probable cases
have been reported in 31 countries, with exten-
sive ongoing transmission in Taiwan and Chi-
na, continuing transmission in Hong Kong, and
major outbreaks that are now under control in
Singapore (Fig. 1A) and Vietnam (2). The caus-
ative agent of SARS appears to be a novel
coronavirus (3–5).

We have used mathematical models of
SARS transmission to estimate the infectious-
ness of SARS from the rate of increase of cases,

to assess the likelihood of an outbreak when a
case is introduced into a susceptible population,
and to draw preliminary conclusions about the
impact of control measures.

The basic reproductive number of an infec-
tion, R0, is defined as the expected number of
secondary infectious cases generated by an av-
erage infectious case in an entirely susceptible
population. This quantity determines the poten-
tial for an infectious agent to start an outbreak,
the extent of transmission in the absence of
control measures, and the ability of control
measures to reduce spread. R0 can be expressed
as R0 � kbD, where k is the number of contacts
each infectious individual has per unit time, b is
the probability of transmission per contact
between an infectious case and a susceptible
person, and D is the mean duration of infec-
tiousness. In contrast to R0, the effective repro-
ductive number, R, measures the number of
secondary cases generated by an infectious case
once an epidemic is underway. In the absence
of control measures, R � R0x, where x is the
proportion of the population susceptible. Dur-
ing the course of an epidemic, R declines be-
cause of the depletion of susceptibles in the
population and the implementation of specific

control measures. To stop an outbreak, R must
be maintained below 1.

We analyzed data on the first 205 proba-
ble cases of SARS reported in Singapore to
obtain relevant epidemiologic parameters (6).
The number of secondary SARS cases per
index case was highly variable (Fig. 1B) in
each week but fell from a mean of 7 for index
cases with symptom onset in the first week of
the Singapore outbreak to a mean of 1.6 in the
second week to a mean below 1 in most
weeks thereafter (Fig. 1B) (P � .04, Cuzick
test for trend). This decline in secondary cas-
es coincided with the application of control
measures, including isolation of SARS cases
and quarantine of their asymptomatic con-
tacts. Enhanced surveillance of contacts for
the development of symptoms resulted in a
decline in the time from symptom onset until
hospital isolation (Fig. 1C). Because control
measures were rapidly applied, there are too
few data from Singapore to provide a reliable
estimate of R from the period before the
institution of control measures.

We therefore used an alternate approach,
estimating R from the rate of exponential
growth in the number of cases in several
other settings and with the use of data from
Singapore on the mean serial interval, de-
fined as the time from the onset of symptoms
in an index case to the onset of symptoms in
a subsequent case infected by the index pa-
tient (7). The mean serial interval (8) in
Singapore was 8.4 days (SD � 3.8) (Fig. 1E),
although, as expected, it was higher for epi-
sodes of transmission in which the index case
had onset of symptoms in the first 2 weeks of
the outbreak before full-scale interventions
were in place (Fig. 1F; mean for first 2 weeks
was 10.0 days; SD � 2.8 days).

With the use of these estimates, we esti-
mated values of R on the basis of the number
of cases that had been reported by a particular
time, Y(t), under four assumptions: (i) Y(t) �
1358 cases reported in Hong Kong on 19
April, t � 63 days after the first case on 15
February (2); (ii) Y(t) � 425 cases reported in
Hong Kong on 28 March (2), just before the
application of specific measures to control
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SARS; and (iii) Y(t) � 7919 cases reported
worldwide as of 20 May, t � 185 days after
the first known case on 16 November 2002
(2). To assess the impact of possibly signifi-
cant underreporting, we repeated the calcula-
tion (iv) under the arbitrary assumption that
the true number of cases was Y(t) � 15,000 at
t � 185 days.

The spread of SARS in a fully susceptible
population in the absence of specific control
measures is best reflected by assumption (ii),
which provides an approximate estimate of
R0 ranging from 2.2 to 3.6 for serial intervals
of 8 to 12 days (9). The other data sets, which
reflect uncontrolled spread at the onset of
local epidemics followed by increasing ef-
forts at control over time, predictably provide
lower estimates (Fig. 2). The effect of even
substantial underreporting is relatively small
because of the logarithmic contribution of the
number of cases to the estimate of R. These
values of R are considerably lower than those
estimated for most other diseases with respi-
ratory transmission, indicating that control
measures have the potential to be more effec-

tive at blocking epidemic spread. On the oth-
er hand, even an infection with an R of 2, if
allowed to spread unchecked in a fully sus-
ceptible population, is expected to infect a
majority of the population (10).

The term “superspreading” has been used to
describe situations in which a single individual
has directly infected a large number of other
people; in the Singapore epidemic, of the first
201 probable cases reported, 103 were infected
by just five source cases (6). We used the
Singapore data and a stochastic transmission
model to quantify our uncertainty concerning R
attributable to the large variance of the distri-
bution of the number of secondary cases infect-
ed by each source case and the uncertainty in
that distribution and the serial interval distribu-
tion due to sampling variability (11). We found
that the credible intervals surrounding our de-
terministic approximations were wide (Table 1
and Fig. 3). This happens in part because su-
perspreading can have a large influence on the
early course of the epidemic. Moreover, the
occurrence of index cases that produce large
numbers of secondary cases is a rare event

whose frequency is impossible to estimate pre-
cisely when the epidemic is in its early phases.

If there is large variation in the number of
secondary cases generated by each index
case, the probability that a single introduction
of an infectious case into a population will
result in a large epidemic is lessened as com-
pared to the case where the value of R is the
same but there is less variation (Fig. 4A).
This probability essentially depends on the
likelihood that the first case does, indeed,
give rise to secondary cases and that several
generations of cases take hold before stochas-
tic extinction of the epidemic (12). The prob-
ability of an outbreak from a single introduc-
tion (Fig. 4A) increases with R, reaching
about 80% for R � 2 when the variance in the
number of secondary cases is equal to the
mean (Poisson distribution). However, if the
variance is much larger than the mean, as
suggested by the distribution of secondary
cases described above, the risk of an outbreak
falls significantly. Despite this, the probabil-
ity of an epidemic increases rapidly when
there are multiple introductions (Fig. 4, B to

Fig. 1. Quantitative epidemiology of SARS as reported from Singapore. (A) Epidemic curve
for cases reported up to 5 May 2003. (B) The number of secondary cases infected by an
index case reported by week (mean indicated by circles; minimum and maximum indicated
by error bars); horizontal line indicates 1, the minimum for epidemic growth. (C) Time from
onset of symptoms until hospital isolation of the case, stratified by week of onset. (D)
Number of primary cases (green) by time from symptom onset to isolation, number of
secondary cases infected by such cases (orange), and mean number of secondary cases per
primary case. (E) Serial intervals for known transmissions in Singapore: time from onset of
symptoms in index case to onset of symptoms in secondary case with fitted Weibull
distribution. (F) Serial intervals stratified by week of onset in the index case. (B), (C), and
(F) exclude the final week of data to avoid possible censoring bias. In the box-whisker plots
[(C) and (F)], the box extends from the 25th to 75th percentile of observations [interquartile
range (IQR)], with the center line indicating the median. The bars define the upper and
lower adjacent values, defined as 75th percentile � 1.5 IQR and 25th percentile – 1.5 IQR.
The circles denote observed points outside the adjacent values or single observations in a
period.
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D), Thus, even when the variance is high,
epidemic spread is highly likely when R ex-
ceeds �2 and there are as few as 20 intro-
ductions of the infection into a susceptible
population. This finding suggests that, if re-
peated introductions of SARS cases into a
population failed to result in ongoing trans-
mission, it would be an indication that control
measures have effectively reduced R to levels
near, though not necessarily below, 1.

Our approach to estimating R is robust to
the possibility that individuals may be
asymptomatically infected with SARS and
that such individuals may transmit infection.
It is currently unknown whether individuals
can be infected with SARS but remain
asymptomatic and, if so, whether such
asymptomatic persons can transmit infection.
There is at present no direct evidence of
transmission from an asymptomatic person.
Indirect evidence that it may occur rarely in
normal settings includes a case report of a
transmission from an individual whose only
symptom was mild fever but who was iden-
tified as a SARS case in retrospect (13).
Extensive contact tracing in Hong Kong has
failed to identify a known symptomatic
SARS contact for 8.6% of reported cases
(14). We considered the possibility that
asymptomatic cases exist and constitute a
fixed proportion a of all cases and that these
asymptomatic cases transmit at rate kba. In
this case, the estimated value of R, now given
by R � [kb(1 – a) � kbaa]xD, is unchanged
(15). If asymptomatically infected persons
become immune to subsequent infection
without suffering from SARS, this will ulti-
mately reduce transmission by reducing the
susceptible population. However, if asymp-
tomatic persons contribute substantially to
transmission but are not readily identified as
SARS cases, control measures will be ham-
pered because they depend on the ready iden-
tification of people who have been exposed to
potentially infectious cases.

Measures to contain SARS have taken two
major forms: isolation of symptomatic cases to
prevent further transmission and quarantine and
close observation of asymptomatic contacts of
cases so that they may be isolated as soon
as they show possible signs of the disease. To
assess the impact of such measures, we con-
structed a simple, deterministic, compartmental
model for SARS transmission, in which a
standard susceptible–exposed (noninfectious)–
infectious–recovered (SEIR) structure (10) was
modified to accommodate quarantine and iso-
lation (Fig. 5). The infection process was mod-
eled in a population (N0) of 10 million individ-
uals, consistent with the size of a large urban
center. We assumed that an infectious individ-
ual has a mean of k potentially infectious con-
tacts per day, that susceptible contacts are in-
fected with probability b, and that the number
of contacts was independent of population den-

sity. We further assumed that individuals are
isolated at a fixed rate per day after becoming
infectious and that isolated individuals are no
longer at risk of transmitting infection. Infected
individuals become noninfectious by either dy-
ing, recovering, or being isolated, and the mean
duration of infectiousness is D days. Quarantine
is modeled as follows: Of the bkS/N0 suscepti-
ble contacts infected by an infectious individual
each day, a proportion, q, will be sent into
quarantine before they themselves become in-
fectious and will remain there until they do

become infectious, at which point they are
isolated before they can transmit to others;
thus, quarantine is assumed to be 100% ef-
fective for those contacts who are found be-
fore they become infectious. Additionally, a
proportion, q, of an infectious individual’s
daily susceptible contacts who will not go on
to develop disease are also quarantined for 10
days, temporarily removing them from the
susceptible pool (16, 17).

In this basic model, the impact of such
control measures is almost completely captured
by a simple expression for R in the presence of
interventions: Rint � R(1 – q)Dint/D, where Dint

is the mean duration of infectiousness in the
presence of interventions (Fig. 6A). To reduce
R from a value of, for example, 3 to below 1,
the combined effect of reducing the infectious
period of detected cases and quarantining their
contacts (who will then presumably be isolated

Table 1. 90% credible intervals for the value of R
from stochastic simulations for four target values.
Technical details are given in (11).

90% credible
interval

1358 cases at day 63 (1.4, 4.5)
425 cases at day 41 (1.5, 7.7)
7919 cases at day 185 (1.1, 1.5)
15,000 cases at day 185 (1.1, 1.5)

Fig. 2. Estimated values of the reproductive
number for SARS in the absence of specific
control measures for a range of serial intervals
from 4 to 15 days (SOM Text). Figure assumes
f � 0.3 or 0.7; see fig. S1 for sensitivity analysis
for different values of f . Green represents es-
timated R values for Y(41 days) � 425; red,
Y(63 days) � 1358; magenta, Y(185 days) �
7919; and blue, Y(185 days) � 15,000.

Fig. 3. Marginal posterior
distribution of R under
the Bayesian procedure
(11) for Y(41 days) � 425
based on 1000 simula-
tions for each candidate
value of R. The most no-
table feature of the pos-
terior distribution is the
considerable right skew,
so that although the 90%
credible interval spans
(1.5, 7.7), the mode is
about 2.2 and the expect-
ed value is 3.5. Thus, the mode is somewhat lower and the mean somewhat higher than the range
obtained by the deterministic approach, which for a serial interval of 8.4 days is 2.2 to 2.6,
depending on the value of f used.

Fig. 4. The probability of
an outbreak of SARS in a
susceptible population for
a range of values of R, ap-
proximated by the proba-
bility of nonextinction of a
branching process (22) in
which the number of sec-
ondary cases is given by a
negative binomial distribu-
tion with a mean of R and
a variance-to-mean ratio
ranging from 1 (for which
the negative binomial re-
duces to the Poisson distri-
bution) to 20 [from left to
right: 1 (black), 2 (green), 4
(blue), 10 (magenta), 20
(red)] after the introduction of (A) a single infectious case, (B) 5 infectious cases, (C) 20 infectious cases,
and (D) 100 infectious cases.
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rapidly once symptomatic) must reduce total
infectiousness by at least two-thirds, for exam-
ple, by a 50% reduction in the infectious period
combined with successful quarantine and pre-
vention of transmission by one-third of all con-
tacts. This calculation assumes that individuals
are equally infectious throughout the period
from the onset of symptoms to isolation. Some
early studies of viral titers in nasopharyngeal
aspirates suggest that viral shedding increases
over the first 10 days after the onset of symp-
toms (4). If this is reflected as increasing infec-
tiousness with time from onset of symptoms, as
hinted by Fig. 1D, then reductions in the mean
time to isolation will have disproportionate ef-
fects in reducing transmission. In most settings,
both interventions will be needed, because both
will have limited effectiveness. The effective-
ness of quarantine will be compromised by an
inability to trace all infected contacts before
they become infectious, by any noncompliance

with quarantine, and by the possibility that
some individuals who comply with quarantine
and remain asymptomatic for 10 days will later
become symptomatic and infectious. The effec-
tiveness of isolation will be limited by the
availability of isolation facilities, by the speed
of the isolation process, and by failures of in-
fection control for isolated patients. The impor-
tance of health-care settings in the transmission
of SARS has been repeatedly documented, and
a number of transmission events have occurred
even after the index patient had been isolated.
Equally important, however, is that from an
epidemiologic perspective, prevention of trans-
mission need not be 100% effective, because
the reproductive number does not need to be
zero to bring the epidemic under control, only
reduced and maintained below one.

The scale of interventions required to con-
trol an epidemic depends on the number of
infectious cases present at the time the con-
trol measures are instituted and on logistical
constraints, such as availability of isolation fa-
cilities. Isolation and quarantine procedures will
be less effective as more cases accrue (18).
Therefore, stringent measures implemented ear-
ly in the course of the epidemic prevent the
need for more stringent measures as the epi-
demic spreads. Over the course of an epidemic
in a closed, homogeneously mixing population,
the number of person-days spent in quarantine
depends in a complex way on the effectiveness
of quarantine and other control measures (Fig.
6B). Above a particular threshold, quarantining
a larger fraction of each infectious case’s con-
tacts actually results in a lower number of over-
all person-days in quarantine, because quaran-
tine effectively controls the epidemic so that it
more than compensates for the larger number of
persons quarantined initially. This threshold
and the overall number quarantined are lowered

when isolation is used to further reduce trans-
mission. Because the exact threshold value is a
function of parameters that are not yet well
defined, the model cannot be used to indicate
what level of quarantine will be most effective
and is meant for illustration only (fig. S2).
Figure 6B does, however, suggest that if SARS
were allowed to spread over a long period with
an R exceeding 1 in a susceptible population,
quarantine would impose a large burden on the
population, with individuals being quarantined
multiple times over the course of the epidemic.

We have used a simple approach based on
exponential growth rates in cumulative case
numbers to estimate the reproductive number of
SARS in the early epidemic in Hong Kong as
well as in settings in which initial uncontrolled
spread was followed by periods of more effec-
tive control. We have further confirmed the
robustness of these estimates by using stochas-
tic simulations based on the observed distribu-
tions of critical parameters from these settings.
These methods capture in simple distributions
such complexities as restricted mixing patterns,
heterogeneity of transmission in different set-
tings (for example, households and hospitals),
and the effects of individual characteristics such
as age (1) on transmission and outcomes. Such
simplifications allow us to measure the relative
impact of a number of specific factors, such as
the contributions of superspreading and asymp-
tomatic cases. Future work should certainly
focus on quantifying transmission and other
epidemiological parameters in a variety of cir-
cumstances and use SARS-specific parameters
to construct more detailed models of transmis-
sion that realistically incorporate the effects of
heterogeneities in specific settings. In addition
to the control measures considered here, we
expect other aspects of SARS transmission,
such as the duration of acquired immunity (19),

Fig. 5. Mathematical model for SARS transmis-
sion. Susceptible individuals are infected by
infectious, undetected individuals and become
infectious themselves after a stage of latency.
Infectious individuals lose infectiousness by
death, recovery, or isolation. No births or
deaths from non-SARS causes are considered.
When quarantine is implemented, a proportion,
q, of new infections are quarantined before
they become infectious; additionally, the same
proportion of susceptible individuals who were
contacts of infectious persons but were not
infected are also quarantined. Susceptible indi-
viduals are released from quarantine after 10
days; for simplicity, we assume that quaran-
tined individuals are isolated before they can
infect anyone else and that compliance with
quarantine is complete (SOM Text).

Fig. 6. Modeled public-health impact of interventions against SARS including isolation and
quarantine. (A) Contour plot showing values of the reproductive number with interventions, Rint,
as a function of the proportion of contacts effectively quarantined (q) and the reduction in
infectiousness achieved by infection control and isolation. The aim of these interventions is to
curtail the epidemic by reducing Rint to less than 1. A baseline value of R � 3 is assumed. (B) The
total number of days spent in quarantine per person during the entire course of a SARS epidemic
for a given level of effective quarantine. A threshold exists above which quarantining a larger
fraction of each infectious case’s contacts lowers the number of person-days in quarantine. This
threshold is lowered as the duration of infectiousness for each case is reduced by faster isolation,
which is indicated by the number next to each curve. Absolute values are for illustration only as
they depend on several unknown parameters (SOM Text).
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the effect of seasonality on transmission rates
(20), and the role, if any, of animal reservoirs,
will be important determinants of the future
course of the SARS epidemic. These uncertain-
ties make long-term forecasting of the course of
the epidemic premature.

The relatively low value we have estimated
for R suggests that an achievable combination of
control measures, including shortening the time
from symptom onset to isolation of patients and
effective contact tracing and quarantine of ex-
posed persons, can be effective in containing
SARS. Indeed, such measures appear to have
formed the basis of effective control in Singa-
pore and Vietnam and have, on a smaller scale,
likely contributed to the prevention of major
outbreaks in other countries. On the other hand,
in the absence of such effective measures,
SARS has the potential to spread very widely.
Considerable effort will be necessary to imple-
ment such measures in those settings where
transmission is ongoing, but such efforts will be
essential to quell local outbreaks and reduce the
risk of further global dissemination.
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