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Traveling waves in a model of influenza A drift
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Abstract

Between major pandemics, the influenza A virus changes its antigenic properties by accumulating point mutations (drift) mainly

in the RNA genes that code for the surface proteins hemagglutinin (HA) and neuraminidase (NA). The successful strain (variant)

that will cause the next epidemic is selected from a reduced number of progenies that possess relatively high transmissibility and the

ability to escape from the immune surveillance of the host. In this paper, we analyse a one-dimensional model of influenza A drift (Z.

Angew. Math. Mech. 76 (2) (1996) 421) that generalizes the classical SIR model by including mutation as a diffusion process in a

phenotype space of variants. The model exhibits traveling wave solutions with an asymptotic wave speed that matches well those

obtained from numerical simulations. As exact solutions for these waves are not available, asymptotic estimates for the amplitudes

of infected and recovered classes are provided through an exponential approximation based on the smallness of the diffusion

constant. Through this approximation, we find simple scaling properties to several parameters of relevance to the epidemiology of

the disease.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The human influenza A virus has been responsible for
three major pandemic outbreaks in the last century. The
pandemics are usually caused by the appearance of a
new subtype (antigenic shift) having immunologically
different genes coding for at least one of the surface
proteins hemagglutinin (HA) and neuraminidase (NA)
(Smith and Palese, 1989; Webster et al., 1992; Cox and
Subbarao, 2000; Earn et al., 2002). Between pandemic
outbreaks, the virus is able to produce annual epidemics
of varying degrees of virulence by changing its amino
acid composition in the active areas (epitopes) of the
HA and NA proteins (Plotkin et al., 2002). This process,
known as antigenic drift, can be examined at the
genotype level by looking at the evolution of phyloge-
netic trees (Fitch et al., 1991, 1997; Bush et al., 1999). In
the case of influenza A, the evolution proceeds along a

main trunk with short side branches containing lineages
that are not selected for. For the H3N2 subtype, the
HA1 region of the HA protein is changing at the rate of
nearly six nucleotide substitutions per genome per year,
which is significantly higher than the silent rate of two
nucleotides per genome per year in the non-structural
gene (NS) (Buonagurio et al., 1986; Fitch et al., 1997).
The rapid evolution of the HA1 region is the result of
selective forces operating on the host (neutralizing
antibodies and cell-mediated immune responses) and
population levels (herd immunity). An epidemiological
model must simplify the bewildering complexity of
genotypic responses and map the evolution of variants
on a phenotype space. There is no clear correlation
among these two spaces, as linear ordering in the
genome sequence does not reveal the full three-dimen-
sional (3D) antigenic structure after protein folding. In
building the model, we will assume that such phenotype
space exists and that the virus drifts along a one-
dimensional (1D) axis x of variants that mimics its
evolution along the main trunk of the phylogenetic tree.
Our model differs from Pease’s (1987) ‘evolutionary
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epidemiology’ and other versions (Girvan et al., 2002) in
that while their models describe the effect of slow
antigenic changes in a single variant on the dynamics of
drift, they do not explain what causes drift. In our
model, mutation is the driving force behind drift
and this drift is constrained to move unidirectionally
because of the structure of cross-immunity in the host
population.
Instead of paying attention to the virus itself, we will

concentrate on the number of infected hosts in the
population (Levin and Pimentel, 1981). Several con-
siderations will guide us in setting up the model. First,
there is strong evidence that immunity of the host to
reinfection by the same strain of influenza A is lifelong
(Couch and Kasel, 1983). On a second challenge,
memory B (long-term memory) and T (short-term
memory) cells can be activated to reduce virus concen-
trations to levels that are harmless to the host. We
incorporate this fact by allowing infected individuals to
transmit the disease only to hosts that either have
recovered from infections with variant types yox or are
fully susceptible. Second, hosts recovered from infection
with variant x exhibit a certain degree of cross-
protection to challenges by related variants. This cross-

immunity is manifested in HA inhibition assays (Levine,
1992; Both et al., 1983; Xu et al., 1993) and further
corroborated by studies in closed populations (Potter
et al., 1977; Larson et al., 1978). In the model, we
introduce a kernel Kððx � yÞ=aÞ that reduces suscept-
ibility to infection when y approaches x to within a
distance a; while attaining almost full strength when the
distance between x and y is significantly larger than a:
An equivalent formulation ensues if instead of suscept-
ibility we pay attention to transmissibility. Third, a full
model must include the immunological history of the
host (Andreasen et al., 1997). This can be done by
dividing the population into classes, each carrying a
signature characterizing current and all past infections
of its members. In the model we analyse, these
complications are avoided. We keep track of only the
current and most recent past infection while adding a
discrete fully susceptible class with a birth rate that
exactly matches deaths from all classes. In Section 2, we
outline an extension of the drift model first proposed by
Andreasen et al. (1996) and estimate the asymptotic
speed of the wave. In Section 3, we briefly discuss the
threshold condition, R0 > 1; necessary for the onset of
an epidemic outbreak. The basic reproduction number
R0 (Anderson and May, 1991), is defined as the number
of secondary infections caused by a single infected host
in a totally susceptible population. We also establish
conditions for the existence of traveling waves with
amplitudes that vanish as x-7N: In phase space, this
means that the solution is a trajectory that begins and
ends at the origin, or equivalently, a homoclinic orbit
(Billingham and King, 2000). Furthermore, we explain

why the numerical value of the wave speed as a function
of the total population, may be below the asymptotic
estimate. In Section 4, we develop an asymptotic
approximation, based on the smallness of the diffusion
constant, to obtain approximate solutions for the
normalized densities of infected and recovered classes
in the frame of reference moving at the speed of the
wave front.

2. Drift model in phenotype space

The proposed model generalizes the classical SIR
model (Anderson and May, 1991) by approximating
drift as a diffusion process on a 1D axis of variant types.
Let SðtÞ be the number of fully susceptible hosts at time
t; iðx; tÞ the distribution of infected hosts, carrying
variant x; and rðx; tÞ the distribution of hosts who have
recovered, and are immune to, variant x: We define the
total population of infected and recovered as IðtÞ ¼R
N

�N
iðx; tÞ dx and RðtÞ ¼

R
N

�N
rðx; tÞ dx: The drift pro-

cess is a local one and in a discrete space of variant types
j it takes on the form

1
2 ½ pið j þ 1; tÞ þ pið j � 1; tÞ� � pið j; tÞ;

where p is the mutation rate in antigenic space (Sasaki,
1994). Passing to the continuous limit, we find the
equivalent expression

D
@2iðx; tÞ
@x2

;

where D ¼ p=2: The per capita growth rate of infection
by hosts carrying variant x is given as

bN

Z x

�N

K
x � y

a

� �
rðy; tÞ dy þ SðtÞ

� �
;

where the constant coefficients b and N are the contact
rate and the total population. The susceptibility kernel
K weighs the recruitment of recovered hosts to any yox

by their closeness (in the antigenic sense) to x: The
constant a is defined as the value of x such that
susceptibility rises to half of its maximum value, Kð1Þ ¼
1
2
: Host susceptibility is weakest within a distance of
order a near x and rises monotonically with distance,
e.g. K ¼ 0 at y ¼ x and K-1 when jx � yjba: With the
above expressions, the dynamics of drift and infection
can be captured by the following system of equations:

dSðtÞ
dt

¼ mðN � SðtÞÞ � bNSðtÞIðtÞ; ð1aÞ

@iðx; tÞ
@t

¼ iðx; tÞbN

Z x

�N

K
x � y

a

� �
rðy; tÞ dy � ðnþ mÞiðx; tÞ

þ bNSðtÞiðx; tÞ þ D
@2iðx; tÞ
@x2

; ð1bÞ
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@rðx; tÞ
@t

¼ � rðx; tÞbN

Z
N

x

K
x � y

a

� �
iðy; tÞ dy

þ niðx; tÞ � mrðx; tÞ: ð1cÞ

The constants 1=n and 1=m are the average infectious
period and host lifetime, respectively. One can check
directly that the total population N is constant by
directly integrating the i and r equations over the whole
x-axis and then adding up all three equations. The limits
of integration in Eq. (1b) have been set so that recovered
individuals at x can only be recruited by infected
individuals carrying strains y > x: The asymmetric limits
of integration prevent hosts from being continuously
reinfected with the same strain. As the total population
N remains constant we can rescale S; i and r as
fractions of N; time in units of 1=ðnþ mÞ and distance
along x in units of a: Therefore, let us define a new set of
scaled variables,

S-S=N; i-i=N; r-r=N; t-ðnþ mÞt; x-x=a;

R0 ¼ bN=ðnþ mÞ; d ¼ D=ððnþ mÞa2Þ; e ¼ m=ðnþ mÞ

and rewrite system (1) as

dSðtÞ
dt

¼ eð1� SðtÞÞ � R0SðtÞIðtÞ; ð2aÞ

@iðx; tÞ
@t

¼R0iðx; tÞ
Z x

�N

Kðx � yÞrðy; tÞ dy þ R0SðtÞiðx; tÞ

� iðx; tÞ þ d
@2iðx; tÞ
@x2

; ð2bÞ

@rðx; tÞ
@t

¼ � rðx; tÞR0

Z
N

x

Kðx � yÞiðy; tÞ dy

þ ð1� eÞiðx; tÞ � erðx; tÞ: ð2cÞ

In Table 1, we provide some useful data about
influenza A that will be used later on.
The averages of nE70=year and mE1=ð70yearÞ

indicate the wide range of time-scales in influenza
dynamics. The constant a can be estimated from Pease
(1987), who reports that the probability of reinfection
increases approximately linearly with time after the last
infection, at least for an interval lasting a few years. This
probability is about 30–40% after 5–6 years (Potter
et al., 1977) and is proportional to the rise in
susceptibility. Assuming annual epidemics, we estimate
a to be of the order of 6–9 variants, which is the distance
jx � yj ¼ a associated with a rise in susceptibility to 50%

of the maximum. This parametrization of K determines
the small diffusion constant d once we identify the speed
of the wave with the speed of epidemic outbreaks, E1
variant per year. Further evidence for these values of a

can be found in estimates of the ratio of infectious
period over the average time T between infection and
reinfection. This ratio is E0:002–0.004 (Pease, 1987)
giving a value of TE7–8 years or an infection in the
host for every 7–8 variants sweeping the population. In
the following, we will assume d51 in our calculations,
and later verify that the assumption is consistent with
the estimates for the asymptotic speed of the wave.
In the next section, we will establish under which

conditions a steady traveling wave can be sustained.
Here, we assume its existence and determine the speed
by looking at the leading edge of the wave, where iðx; tÞ
is small. We first change variables to the co-moving
frame, u ¼ x � ct: In the infinite line of variants we will
be looking for steady-state solutions that satisfy the
boundary conditions, ðiðuÞ; rðuÞÞ-ð0; 0Þ as juj-N: For
large u; the integral term reaches the asymptotic value R

(the total population of recovered hosts) and using a
trial solution, iBe�lu; we derive the dispersion equation
(Murray, 1989),

c ¼
R0ðR þ SÞ � 1þ dl2

l
:

As lambda is real and positive (other cases violate either
iðuÞX0; or iðuÞ-0 as u-N) we observe that the range
of possible speeds is cXc0; where c0 is the minimum
speed. If the initial conditions for iðx; 0Þ decay faster
than e�l0x; l0 being the decay constant at c ¼ c0; then it
can be shown that the selected speed for large t is c0
(Aronson and Weinberger, 1978),

c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðR0ðR þ SÞ � 1Þ

p
: ð3Þ

This value of c also determines the decay constant at the
front end of the wave, l0 ¼ c0=ð2dÞ; which is the slowest
decaying mode of any cXc0:
We can estimate dE4	 10�7–5	 10�7 by equating

the value of 1 variant per year to c0aðnþ mÞ; and setting
R0 ¼ 3; R þ SE0:99 and aE7: It follows that D ¼
dðnþ mÞa2E1	 10�3 � 1:5	 10�3=year: These values
of D appear to be comparable to the value of D ¼ p=2
obtained from the steady mutation rate of 9:7	 10�3

codon substitutions/year (substitutions causing amino
acid replacements) in the HA1 subunit of the HA
protein (Fitch et al., 1997). This is the region responsible

Table 1

Parameter Symbol Estimate Source

Reproduction number R0 2–5 Spicer and Lawrence (1984)

Infectious period 1=n 2–10 days Douglas (1975), Frank et al. (1981)

Cross-immunity scale a 6–9 Potter et al. (1977), Pease (1987)
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for most of the amino acid substitutions directly
involved in antigenic drift. In doing the comparison,
we must rely on the evidence provided by gene
sequencing and cluster analysis (Wilson and Cox,
1990; Plotkin et al., 2002), suggesting that new drift
strains require approximately four or more amino acid
changes across two or more epitopes to successfully
trigger an epidemic. Therefore, the estimate from
sequence analysis is DE0:8	 10�3–1:2	 10�3=year;
which is of the same order of magnitude as the value
obtained from the wave speed.

3. Threshold conditions and wave structure

To demonstrate the existence of a threshold condition
(Anderson and May, 1991), we first observe that
ðS; i; rÞ ¼ ð1; 0; 0Þ is an equilibrium state of system (2).
The stability of the endemic equilibrium can be
determined by studying perturbations around equili-
brium of the form ðsðtÞ; jðx; tÞ;rðx; tÞÞ: The perturbations
obey the equations

ds
dt

¼ �esðtÞ � R0JðtÞ; ð4aÞ

@jðx; tÞ
@t

¼ R0jðx; tÞ � jðx; tÞ þ d
@2jðx; tÞ
@x2

; ð4bÞ

where JðtÞ ¼
R
N

�N
jðx; tÞ dx: Integrating the j-equation

over x yields

dJðtÞ
dt

¼ R0JðtÞ � JðtÞ ð5Þ

showing that JðtÞ grows iff R0 > 1:
In the following, we provide some necessary condi-

tions for the existence of traveling waves. Assume that
there exists a steady traveling wave of the form
ðSn; iðuÞ; rðuÞÞ; where the coordinate u ¼ x � ct moves
with the front and Sn is time independent. The wave
solutions will have to solve the equations

0 ¼ eð1� SnÞ � R0S
nI ; ð6aÞ

�c
diðuÞ
du

¼R0iðuÞ
Z u

�N

Kðu � wÞrðw; tÞ dw

þ R0S
niðuÞ � iðuÞ þ d

d2iðuÞ
du2

; ð6bÞ

�c
drðuÞ
du

¼ � R0rðuÞ
Z

N

u

Kðw � uÞiðwÞ dw

þ ð1� eÞiðuÞ � erðuÞ: ð6cÞ

From these equations, we must find a homoclinic orbit
in the 3D phase space ðiðuÞ;diðuÞ=du; rðuÞÞ that connects
the ð0; 0; 0Þ state at u ¼ �N to the same state at u ¼ N

(Kuznetsov, 1998). As u-�N; the equations for i and

r reduce to

�c
diðuÞ
du

¼ R0S
niðuÞ � iðuÞ þ d

d2iðuÞ
du2

; ð7aÞ

�c
drðuÞ
du

¼ �R0rðuÞI þ ð1� eÞiðuÞ � erðuÞ ð7bÞ

or into a set of three first-order equations

diðuÞ
du

¼ yðuÞ; ð8aÞ

dyðuÞ
du

¼ ½�cyðuÞ � R0iðuÞSn þ iðuÞ�=d; ð8bÞ

drðuÞ
du

¼ ½R0rðuÞI � ð1� eÞiðuÞ þ erðuÞ�=c: ð8cÞ

These linear equations have two positive real eigenva-
lues about ð0; 0; 0Þ provided that 1� R0S

n > 0: Assum-
ing that r > 0 and integrating Eq. (6b) between �N and
þN; we find

0 ¼R0S
nI � I þ R0

Z
N

�N

iðuÞ
Z u

�N

Kðu � wÞrðwÞ dw du

oR0IðSn þ RÞ � I ; ð9Þ

which gives the inequalities R0S
n � 1o0 and R0ðSn þ

RÞ � 1 > 0: This shows that we do in fact have two
positive real eigenvalues.
As u-þN; system (6) simplifies to

diðuÞ
du

¼ yðuÞ; ð10aÞ

dyðuÞ
du

¼ ½�cyðuÞ � R0iðuÞðSn þ RÞ þ iðuÞ�=d; ð10bÞ

drðuÞ
du

¼ ½�ð1� eÞiðuÞ þ erðuÞ�=c; ð10cÞ

which has two negative real eigenvalues provided that

c2=d þ 4ð1� R0ðSn þ RÞÞ=d > 0; ð11aÞ

1� R0ðSn þ RÞ > 0; ð11bÞ

c > 0: ð11cÞ

Condition (11b) is satisfied according to the computa-
tion given above. Condition (11a)+(11c) holds for all
cXc0; where c0 is the asymptotic speed we have given in
the previous section. This analysis explains why we end
up with the traveling pulse wave structure. Since at u ¼
�N; we start with a 2D unstable manifold in a 3D space
and since we end up at u ¼ þN with a 2D stable
manifold these manifolds will intersect in the generic
sense, giving us the homoclinic orbit we are looking for.
In Fig. 1, we compare the asymptotic speed (3) with

numerical solutions for different values of R0: The fit is
close, within a 4–8% difference.
The reason why the numerical solutions always lie

below the theoretical prediction has to do with system
(1) being structurally unstable (instability to small
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changes in the model and not to perturbations of the
solutions). This structural instability arises from the
instability of the homoclinic orbit to generic perturba-
tions of the model (Kuznetsov, 1998). Two of the
consequences of this instability are the slow convergence

to the asymptotic wave and the strong dependence of the
speed of the wave on either small random fluctuations in
the parameters of the system or on the presence of a
small cutoff ahead of the wave front (Paquette et al.,
1994; Brunet and Derrida, 1997; Kessler et al., 1998).
If one thinks of the continuous system (1) as an
approximation to a contact process among N indivi-
duals, the cutoff is 1=N: Both, the 1=t convergence to the
asymptotic speed and the effective cutoff to the infection
process introduced by localized initial conditions (we
use rectangular distributions for iðx; 0Þ and rðx; 0Þ)
during numerical simulations for i and r reduce the
velocity of the front.
Apart from these numerical issues, the presence of a

real cutoff equal to 1=N in actual populations of N

individuals can be estimated. Our model falls within the
category of equations from which there are theoretical
estimates (Brunet and Derrida, 1997, 1999). In the
presence of a cutoff, the deterministic model has a
velocity

cNCc0 �
ðpl0Þ

2c00ðl0Þ

2 lnðNÞ2
: ð12Þ

In the last equation, l0 ¼ c0=ð2dÞ and the second
derivative c00 is evaluated at this point. For example, if
we assume NB106 and the parameter values of Fig. 1,
we find cN to be E2:5% smaller than c0:

4. Asymptotic solutions

We are not aware of any exact solutions of system (2)
and consequently, will seek asymptotic solutions based
on the smallness of d: In Fig. 2, we display several
snapshots of wave profiles as a function of R0:
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Fig. 1. Comparison between the theoretical speed of the infective wave

(Eq. (3)) and the speed estimated by simulating the basic model (1) as

functions of the reproduction number R0: To simulate the basic model,
we discretized each of the PDEs of system (1) with a set of ñ ODEs by

equally spacing the variant interval ðxmin;xmaxÞ (numerical values are
ñ ¼ 800; xmin ¼ �10; and xmax ¼ 150Þ: The speed in the simulation is

evaluated as the slope of the straight line that best fits (in a least square

sense) the average of the normalized distribution for the i’s (i.e.
R
N

�N
x �

inðxÞ dxÞ as a function of time. The algorithm used to integrate the

ODEs system is a fully variable step size method (ODE113 described in

Shampine and Reichelt, 1997). The convolution integral of Eq. (2b)

has been evaluated via the Richardson’s extrapolation of the Simpson

rule (see formula 4.2.4 in Press et al., 1988). Parameter values are set to

m ¼ 2:5	 10�4; N ¼ 1; n ¼ 1; b ¼ R0ðmþ nÞDR0; KðzÞ ¼ z=ðz þ aÞ;
a ¼ 5 and D ¼ 0:02:
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Fig. 2. Traveling waves for i (black) and r (light gray) obtained by simulating the system (1) for different values of the contact rate bDR0: R0 ¼ 2

(solid, scale on the right y-axis), R0 ¼ 4 (dashed), R0 ¼ 6 (dashed and dotted), and R0 ¼ 8 (dotted). The snaphosts have been taken at times T ¼ 500

for R0 ¼ 2; and T ¼ 240 for all other R0: Unspecified parameters and numerical scheme as in Fig. 1.
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We observe that at low values of R0; the distribution
of recovered is highly skewed. When an epidemic
outbreak is weak, the infected are unable to pull all
recovered near its own distribution, thus leaving behind
a significant trail of uninfected across all x: This
skewness decreases significantly as R0 increases. In
contrast, the distribution of infected is highly symme-
trical for all R0: This is a consequence of the smoothing
effect of diffusion along both directions. In Fig. 3, we
plot the variance of the normalized distributions, inðxÞ ¼
iðxÞ=I and rnðxÞ ¼ rðxÞ=R; as functions of d: We observe
that the variance of the i distribution scales reasonably
well with

ffiffiffi
d

p
; whereas the variance of the r distribution

scales closer to d1=4: We will explain this scaling later.
The results given above justify using an expansion for

i of the exponential type iðuÞ ¼ eF ðuÞ=
ffiffi
d

p
(geometrical

optics approximation, Bender and Orszag, 1999). This is
the sort of global approximation we seek out while
solving second-order differential equations with a small
parameter multiplying the highest derivative. The more
precise physical optics or WKB approximation could
also be used, but the results will not be altered in a
significant way due to the constraints arising from the
conservation of the total population and the slow
variation in u of the term F0ðuÞ in the next order

expansion, iðuÞ ¼ eF ðuÞ=
ffiffi
d

p
þF0ðuÞ: In the frame of

reference moving with the wave, u ¼ x � c0t; system
(2) is equivalent to (see also Eq. (6))

Sn ¼
e

e þ R0I
; ð13aÞ

�c0
diðuÞ
du

¼ iðuÞR0

Z u

�N

Kðu � wÞrðwÞ dw þ Sn

	 


� iðuÞ þ d
d2iðuÞ
du2

; ð13bÞ

�c0
drðuÞ
du

¼ � rðuÞR0

Z
N

u

Kðw � uÞiðwÞ dw

þ ð1� eÞiðuÞ � erðuÞ: ð13cÞ

The first derivative term of Eq. (13b) can be eliminated
with the transformation

iðuÞ ¼ e�l0ui1ðuÞ; ð14Þ

where l0 ¼ c0=ð2dÞ and c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðR0ðR þ SnÞ � 1Þ

p
;

giving

d
d2i1ðuÞ
du2

� i1ðuÞR0 R �
Z u

�N

Kðu � wÞrðwÞ dw

	 

¼ 0:

ð15Þ

The decay constant l0 scales as d�1=2: Therefore, we

write i1ðuÞ ¼ eF1ðuÞ=
ffiffi
d

p
and substitute this expression into

Eq. (15). To lowest order in the expansion parameter d

we obtain

dF1ðuÞ
du

	 
2

�R0 R �
Z u

�N

Kðu � wÞrðwÞ dw

	 

¼ 0;

which has a solution F1ðuÞ ¼
R u

�N

ffiffiffiffiffiffiffiffiffiffi
QðvÞ

p
dv; with

QðvÞ ¼
R v

�N
Kðv � wÞrðwÞ dw (Bender and Orszag,

1999). There is a yet undetermined constant in front of
i1: Its value will be fixed later through the conservation
equation, Sn þ I þ R ¼ 1:
When d51; the i and r distributions are narrow as

indicated in Fig. 3. Furthermore, K changes slowly over
the diffusion length scale, thus allowing us to approx-
imate QðvÞ ¼ RKðvÞ for vX0: In doing so, we assume
that the peak value of rðwÞ occurs at w ¼ 0: This can
always be done as the system is translationally invariant.
The same can be said about integrals involving i in the
integrand. The final expression for i is then

iðuÞ ¼

exp �
c0u

2d
þ

ffiffiffiffiffiffiffiffiffi
R0R

d

r
u

 !
if uo0;

exp �
c0u

2d
þ
Z u

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0Rð1� KðvÞÞ

d

r !

otherwise:

8>>>>>>><
>>>>>>>:

ð16Þ

Note that the solution above has the correct
asymptotic behavior as u-7N: In the discussion that
follows we will use the Monod kernel, KðvÞ ¼ v=ð1þ vÞ:
We expect other smooth kernels to exhibit similar
qualitative behavior.
In the following discussion, we take advantage of the

symmetrical nature of the i distribution. We first find the
root %u of the equation F ð %uÞ ¼ 0 in the exponent of iðuÞ:
This parameter measures the separation between i and r

maxima. For the Monod kernel we find

%u ¼
1� R0S

n

R0ð1� IÞ � 1
: ð17Þ

In general, Sn ¼ e=ðe þ R0IÞE1=ðR0n0Þ51; where n0 is
the average number of reinfections in a host lifetime and
I5R; which means that %uE1=ðR0 � 1Þ for R0X2: Fig. 4
shows that the distance between peaks in unscaled units
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i n
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Fig. 3. The variance of i (filled circles) and the variance of r (white

squares) as functions of d1=2 and d1=4; respectively. The best fit lines
(solid) have the constraint of passing through the origin. R0 ¼ 4; and
other parameter values as in Fig. 1.
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is indeed a linear function of a: The prediction agrees
well with these values.
The normalized gaussian approximation to i can then

be written as

igðuÞ ¼
expð�ðu � %uÞ2=2 varð %uÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p varð %uÞ
p

with varð %uÞ ¼
ffiffiffi
d

p
=jF 00ð %uÞj: In Fig. 5, we compare the

gaussian approximation to inðuÞ: The fit is quite good for
all values of R0 (slightly worse at larger values) and it
gets better at smaller values of d: The gaussian form can
be used to compute integrals involving iðuÞ in the

integrand. In addition, it shows that I scales approxi-
mately as d1=4:
We now address the asymptotic solution for rðuÞ: The

narrow i distribution simplifies the r equation to

c0
drðuÞ
du

þ rðuÞðe þ R0IKð %u � uÞÞ þ ð1� eÞIinðuÞ ¼ 0; ð18Þ

where Kð %u � uÞ vanishes if u > %u: For uo %u we find

roðuÞ ¼
Ið1� eÞ
2c0

exp
R0I

c0

Z u

%u

Kð %u � vÞ dv

	 

:

To derive this expression, we use the fact that the
exponent of i scales as d�1=2 but the exponent of the
other integrand scales as d�1=4; justifying taking the area
of the fast component and evaluating the other factor at

%u: The rather long left tail of rðuÞ is caused by the d�1=4

scaling and it explains why the variance of rðuÞ scales
closer to d1=4 than to

ffiffiffi
d

p
: The very small correction

term e=c0 also scales as d�1=2 but since eB10�4; it has
little effect on the final result. The factor 1

2
multiplying I

has to do with the lower limit of the integral ending at %u;
thus including only half of the total number of infected
(almost half within at most a few %, due to the
symmetrical nature of iðuÞ). The solution r for u > %u can
be written as

r>ðuÞ ¼ B
Ið1� eÞ

c0

Z
N

u

eeðu�vÞ=c0 inðvÞ dv:

In the asymptotic analysis of i; we locked the peak of the
r distribution at u ¼ 0; yet the solution we have just
found for roðuÞ has its peak value at %u:We translate this
solution by replacing u-u þ %u so that roðu þ %uÞ has its
maximum at u ¼ 0: We then find B by matching the two
r solutions at u ¼ 0: The final rðuÞ is in general piecewise
continuous.
In Fig. 6, we display the exponential approximation

and numerical curves. The fit is qualitatively correct
with larger i’s for the asymptotic estimates. We attribute
this effect to the approximation QðvÞ ¼ RKðvÞ; which
overestimates the integral in Eq. (15). These estimates
improve as d gets smaller.
The scaling IBd1=4 predicts a value of IE0:4–

2% (R0E2–5; parameter values as in Fig. 3) when
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ð %xÞ and of the r distribution ð %yÞ on the variant space x is evaluated as

the maximum of the third-order polynomials that best fits the six

closest neighbors to the peak of the discretized distributions.

Parameter values as in Fig. 1.
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dE4	 10�7; which is above but of the same order of
magnitude as those values reported in the literature (Fox
et al., 1982; Monto and Kioumehr, 1975), ItE0:15–
0:48%: At these levels of I ; the total susceptible class S

increases to a few percent. One final comment. To find
the appropriate asymptotic amplitudes for i and r we
must start with an initial trial value for I : We use this
value of I to find the initial equilibrium value of Sn in
Eq. (6a), and then obtain R ¼ 1� I � Sn: After we
finish a first round of computations we end up with a
distribution of recovered equal to rðuÞ; which we
integrate to find Rt: We repeat this process several times
with new trial values of I until jRt � Rj5I :

5. Discussion

The simultaneous cocirculation of many variants of
the same subtype of influenza A in the human
population poses enormous challenges to epidemiolo-
gists and theoretical biologists alike. If one keeps track
of the extensive life history of infections in each host
then the population has to be partitioned into a large
number of dynamical classes giving rise to complex
dynamics (Andreasen et al., 1997; Gupta et al., 1998;
Lin et al., 1999). Yet, these models assume that the
number of variants is fixed, giving no mechanism for the
generation of new strains through drift. The simple
continuous model we have analysed has the advantage
that mutation enters naturally in the process of
generating diversity while predicting a sequential evolu-
tion of the virus in antigenic space. Despite the
shortcomings of the model—keeping track of only the
last infection and crude cross-immunity structure—it is
encouraging to find that the calculated speed of drift is
of the right order of magnitude. This simple result may
help us to understand drift as a function of different
parameters, susceptible pool, mutation rate, suscept-
ibility and reproduction number. Moreover, this result
suggests that other fruitful insights on this complex
disease may be forthcoming from the analysis of simple
(discrete, continuous, or stochastic) models.
We have seen in Section 2, that the predicted speed of

the wave compares well to data from numerical
simulations. Yet, other considerations deserve attention.
The drift process is probably more complex than the
simple diffusion approximation we propose as amino
acid substitutions usually occur in one or simultaneously
in several different epitopes of HA1 to trigger an
epidemic season (Both et al., 1983; Plotkin et al.,
2002). There are substantial correlations at the antigenic
level but sometimes even those changes do not
guarantee a successful virus survival in the population.
This survival may also depend on exogenous (season-
ality, climate) or endogenous factors (immunity of the
host).

Clearly much work remains to be done in character-
izing what antigenic properties are important for virus
reproduction within the host and what virus concentra-
tion threshold levels are needed before hosts become
infectious. Neither have we addressed the spatial
distribution of individuals in the population that is
required before the virus can take off as a local or global
epidemic outbreak. The simple threshold condition
R0 > 1; based on total population size N; is oblivious
of the clustering and constant migration patterns
observed in natural populations. A stochastic formula-
tion is needed to resolve issues connected on the one
hand, to the non-uniformity of amino acid cluster
evolution at small scales (Plotkin et al., 2002), and on
the other hand, to the extinction time of the disease in
small to medium populations at large scales.
In Section 4, we demonstrated the usefulness of

asymptotic estimates. Several parameters were found to
possess simple scaling properties. We have found that
the total fraction of infected I and the variance of rðxÞ
scales with mutation rate p approximately as p1=4; that
the variance of iðxÞ and the speed of the wave scale as
p1=2 and, finally, that the distance between the i and r

peaks scale approximately as a=ðR0 � 1Þ for R0X2;
where a is the length scale of cross-immunity. The model
predicts a constant population IðtÞ over evolutionary
time-scale, but it does not explain the temporal variation
of IðtÞ during annual epidemics. Perhaps this short-
coming can be addressed by developing a seasonally
forced version of model (1). We hope to explore these
and other issues in the near future.
The simple model we have just discussed is only a first

step in understanding influenza A virus drift. Never-
theless it suggests avenues for extending, along several
directions, our comprehension of how the complex
patterns of virus–host coevolution shape the dynamic
structure of herd immunity.
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