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Nervous system development and function in part
depends on the careful orchestration of gene
expression in the CNS. The magnitude of the
problem of understanding this system from a
molecular standpoint is underscored by the estimate
that more than half of all genes are expressed in the
nervous system and many of them are relatively
specific to the brain. Currently, there are many
different high throughput methods to examine gene
expression in different cells, tissues or even
pathological specimens under various conditions,
including serial analysis of gene expression
(SAGE)(Velculescu, Zhang et al. 1995) large-scale
cDNA sequencing (Okubo, Hori et al. 1992), and
DNA microarrays (Schena, Shalon et al. 1995). All of
these approaches rely heavily on use of informatics
for interpretation. In addition, there are now pure
informatic approaches available now, which include
expressed sequence tag (EST) database comparison
(O'Dowd, Nguyen et al. 1998), and mining of SAGE
or other databases. This syllabus focuses on DNA
microarrays.

Oligonucleotide and cDNA arrays enable the
monitoring of thousands of known and unknown
genes in parallel in many samples in an efficient
manner (Schena, Shalon et al. 1995; Lockhart, Dong
et al. 1996; DeRisi, Iyer et al. 1997; Geschwind 2002).
Due to the high throughput nature of this
approach, large amounts of data are generated in a
single experiment. Formerly, cost and availability of
microarrays were limitations to performing
experiments, but as these issues are resolved, the
new limitation becomes interpretation and analysis.
The ability to study gene expression on a genomic
level using microarrays raises many important
issues, most notably data sharing (Becker 2001;
Geschwind 2001; Miles 2001; Mirnics 2001) and
developing array bioinformatic tools for data
mining.

Regarding data sharing, major steps have been taken
towards the development and adoption of a
uniform standard for array data management and
storage. However, one of the factors limiting easy
interaction between genome and array data is the
lack of uniform database standards in use by the
various protein and genome databases, and the
standards continue to change, making easy
connectivity between these resources and array data
problematic even for the professional
bioinformatician (Stein 2002).

Array bioinformatics is a potentially enormous
field; The bioinformatics issues related to
microarray data could easily be the subject of a
week of seminars. This chapter can, by its nature,
deal only briefly with a few of the interesting
bioinformatic approaches that one can take with
microarray data. We take a biological rather than a
mathematical perspective. Therefore, the focus is
not on complex analysis or the algorithms per se,
but rather to give some examples of how to use
databases or bioinformatic approaches to enrich
your experimental design and interpretation so as to
make biological sense out of the data.

1. INTRODUCTION
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DNA microarrays, also known as “DNA chips”, are
ordered arrays of DNA grided andattached onto a
rigid and non-porous surface such as glass or silicon.
Arrays composed ofoligonucleotides synthesized by
photolithography in situ are also available
commercially andform the basis of GeneChip
technology sold by Affymetrix. cDNA arrays
,originally developedby Pat Brown and colleagues at
Stanford (Schena, Shalon et al. 1995), are another
common formof microarrays and are usually
comprised of PCR-amplified inserts from cDNA
clonesrepresenting known genes and expressed
sequence tags (ESTs) (Cirelli and Tononi 1999)
(Wang,Gan et al. 1999). In addition, oligonucleotide
arrays containing long oligonucleotides synthesized
in situ using ink jet technology form the basis of the
Agilent platform, and similar
lengtholigonucleotides (50 to 70-mer) are being
printed on glass slides in a manner similar to
cDNAarrays by many laboratories. While the
Agilent arrays clearly perform very reliably, whether
thein-house custom printed oligonucleotide arrays
perform as well as cDNA arrays remains to
bedemonstrated. The relative technical merits of
cDNA versus oligonucleotide arrays can be foundin
several comprehensive reviews (Lockhart and
Winzeler 2000) (Brown and Botstein 1999)(DeRisi
and Iyer 1999) (Various 1999).

The basic steps of a microarray experiment are
depicted in Figure 1 (from NatureReviews
Neuroscience). Several critical issues that
neuroscientists face are not as salient in
otherdisciplines using microarrays (Geschwind, and
Gregg 2002; Luo and Geschwind 2001). Forexample,
because there are so many cell types and sub-types
in many CNS tissues, one needs toconsider the need
to enrich for the region or cells of interest so as to
detect more subtledifferences in the expression of
low-abundance genes. Microarrays have a detection
limit andthus changes in low abundance genes in
complex tissues may be missed (Geschwind 2000).
Thisis illustrated graphically in Figure 2 (courtesy of
Karoly Mirnics MD PhD) and must beconsidered
during one?s interpretation of the data: In cases
where detection of such rare speciesis necessary,
microdissection or single cell capture methods can
be used. Several signal or RNAamplification
methods are commonly used in microarray
experiments and have proven trackrecords; these
methods may also increase detection of low
abundance transcripts (Eberwine, Yehet al. 1992;
Karsten, Van Deerlin et al. 2002; Karsten 2002; Luo
and Geschwind 2001; Ginsberg2001).

2. WHAT IS A MICROARRAY?
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FIGURE 1

Experimental steps in a typical cDNA microarray experiment. 1)Total RNA is extracted from the two
comparison specimens (spotted and non-spotted mice) and cDNA are separately reversed transcribed
and labeled with different fluors. 2)The two samples are co-hybridized onto the array, the dyes are
excited by a laser and the scattered light is collected and analyzed by a scanner. (Another common
experimental design includes the use of a reference sample labeled with one dye to which all
experimental and control samples are compared by cohybridization. This method is advantageous for
statistical analysis, but care has to be taken that the reference sample remains uniform.) 3)The images
produced by each dye are registered and a false color overlay is produced. 4) Software is used to
segment the raw image into spots and background and intensity values are obtained for each spot and
stored in table format. 5) Ratios of differential expression are calculated and various statistically derived
or empirically derived thresholds are used to classify spots as differentially expressed or not, by
combining a number of replicate hybridizations. 6) This data can be combined with other array data
obtained under different conditions or different time points, and various data visualization and data
exploration algorithms such as clustering or principal components analysis are applied (Geschwind
2001). Figure reprinted by permission from Nature Reviews Neuroscience Vol 2 (6): 437 copyright (2001) Macmillan Magazines Ltd.
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Once the hybridization has been performed, the
analysis of microarray data has many potential
steps, only a few of which are mandatory. Table 1
summarizes several basic “rules”. Nowhere is the
motto “Garbage in, Garbage out” more aptly
applied. RNA quality and experimental design are
the two most important factors in determining the
quality of experimental outcome. Good resources
for experimental design focused on the
neuroscientist include Karoly Mirnic’s chapter in
last year’s DNA Microarrays short course syllabus
(Various 2001), Terry Speeds new book (Speed
2002), the microarray chapter in the Wiley current
protocols series, Current Protocols in Neuroscience
(Unit 4.28); (Karsten 2002), and the newly available
multi-author book, Microarrays for the Neurosciences
(Geschwind 2002).

Figure 5 provides a general schematic of the
relationship of various experimental and analytic
steps to each other, adopted from Kevin Becker’s
lecture in the 2001 SFN short course (Various 2001).
Technical analysis to determine whether the

experiment is of good quality is the usual first step
once the hybridization has been performed. Visual
inspection of the array for gross abnormalities such
as missing spots, smears, poor blocking, etc. is
always important. In addition, replicate arrays can
also be clustered to identify possible outliers that
should be discarded, augmenting the process of
visual inspection. Assessment of hybridization
signals versus background and the number of “hits”
is also important. Similar experiments should have
similar levels and hits. Commercial arrays, such as
Affymetrix and Agilent often have a large number of
sophisticated internal quality standards. 

The second step involves statistical analysis to
answer the question of which genes are
differentially expressed at a significant level. There
are several valid approaches to this. Many
experimental confounds such as non- linearities due
to dye incorporation effects and other factors,
although present, may not have significant influence
on the actual list of genes identified as differentially
expressed. We have performed two quite different

3. EXPERIMENTAL DESIGN

FIGURE 2

If you don’t see it, it doesn’t mean that it isn’t there. Illustrates that low abundance mRNAs detectable
in a single cell may be below the detection limit in a complex tissue containing many cell types. In
addition, expression changes in genes that are detectable, but near this threshold may not be detected
as reliably as those with stronger signals.



Rather than focusing on specific databases,
websites, etc themselves because these resources are
in flux and improving, we now focus on potential
uses of bioinformatics tools following the
identification of an initial gene list is made (of
differences, or critical genes) and give some
examples.
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4. INFORMATIC ASSESSMENT OF ARRAY DATA

analyses on the same data sent and had an
approximately 85% overlap in gene lists, despite
different expression thresholds and normalization
methods. Reasonable quality data sets when
analyzed with reasonable methods should yield
robust results. 

The final two steps described here are
recommended but not required and can be done in
parallel. One of these involves exploratory data
analysis, such as clustering, and dimensionality
reduction techniques, such as principal component
analysis to perform higher order data analysis.
These techniques can be done in a multitude of
situations and the precise application is entirely
dependent on the experimental design. The other
can be thought of as biological analysis and involves
using manual or bioinformatic approaches to
identify protein families, transcriptional control
factors or literature searches to provide a more solid
biological context for the data and to generate new
hypotheses for downstream experiments. Some
general reviews for statistical analysis of spotted
arrays include Computational Analysis of Microarray
Data (Quakenbush, (Nadon and Shoemaker 2002;
Sabatti, Karsten et al. 2002) Chiarra Sabatti?s
chapter in the 2001 Microarrays short course syllabus
(Various 2001) and many websites, most notably
Terry Speed’s website at Berkeley (http://stat-
www.berkeley.edu/users/terry/zarray/Html/).
Statistical analysis of affymetrix arrays is sufficiently
different that we refer you to Li and Wong (2001),
Tusher, Tibshirani et al. (2001), and
www.Affymetrix.com instead.

FIGURE 5

Adapted from Kevin Becker, PhD.
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TABLE 1

Fundamentals of experimental design.
1) Perform an adequate number of independent replicates to identify differentially expressed genes of
interest. Three replicates is a minimum for most typical experiments (Lee et al. 2001). RNA quality
check is mandatory.

2) Assess array quality and biological variability by inspection and image analysis. Homotypic
hybridizations (same sample compared to itself; See Sabatti et al., 2001), and array versus array plots
(independent replicates of the same experiment; see Figure 3) are often helpful in this regard.

3) Perform appropriate normalization. Data is typically log transformed. Standard techniques include
global normalization, normalization to standards on the array such as housekeeping genes, and
normalization to doped in controls or a reference sample. Typically, non-linear normalization is used since
ratios will deviate as a function of signal strength for a variety of reasons (Figure 4, “A vs. M” plot).

FIGURE 4

“A vs. M” plot. The A (signal intensity) vs M
(Log2 ratios of differential expression) plot
provides a good check of normalization of
data, because relationship between ratio and
intensity can be easily visualized (Yang
2001). In this case the data has been
subjected to a non-linear normalization, so
that there is no real skew in the data. For
most arrays, ratios should be evenly
distributed without regard to intensity if
normalization has been properly performed,
and the center of the distribution along the
M axis should be around zero.

FIGURE 3

Comparing independent “replicate”arrays.
Gene expression ratios between 2
experiments conducted using independent
samples, but making the same basic
comparison onto two different arrays.
Tyramide signal amplification was used to
amplify 1 ug of total RNA from each sample
for hybridizaton onto a mouse ten thousand
spot array. This not only depicts variation due
to the hybridization and arrays, but that due
to biological variability between culture
samples. Correlation between replicate
experiments is usually over 95% when direct
labeling methods are used, but falls into the
80% range when TSA amplificaton is used,
necessitating more replicates to account for
the variance.



The first step in processing the set of differentially
expressed genes is to find out what is currently
known about them. Most of us usually rely on our
own ever-shrinking fund of knowledge and manual
literature searching, making this a tedious task,
especially when hundreds of genes may be involved.
Currently, there is no substitute for this approach of
hitting the books (or keyboard). However, a variety
of tools have recently been created to help in the
task of placing microarray results into context of
the previously existing literature. This is an
important and yet daunting task as few scientists
will have even a passing familiarity with every one of
the thousands of genes that may be on a single
array. To help reduce the amount of information
that a scientist must sift through, and to help aid in
the eventual interpretation of the results, many
genes may be placed into pathways that visually
describe their physiological roles and relationships
to other genes. 

GenMAPP
Tools to “map” the results of gene expression
studies onto known pathways are now coming
online. An example of such a tool is GenMAPP
(www.genmapp.org) (Dahlquist, Salomonis et al.
2002) GenMAPP is a relatively simple program that
allows the investigator to display their gene
expression data on anyone of roughly a thousand
pathways from the literature, or on a pathway that
they themselves generate. The program simply
color-codes genes on the pathway according to gene
expression, following criteria set by the user. For
example, genes with a 2-fold greater expresion in
cancerous tissues may be color coded red, and those
with a 2 fold greater expression in normal tissues be
color-coded blue. This would allow one to quickly
browse pathways to try and find ones that seem
particularly relevant to cancer biology. The software
runs in a windows environment, is free to the
scientific community, and is relatively easy to set up
and use. The most difficult portion is formatting
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5. INITIAL ANNOTATION OF GENE LIST BASED ON PUBLISHED LITERATURE (WHAT IS KNOWN?)

FIGURE 6

Linking array data to the literature. Starting with a list of genes derived from a microarray experiment,
the program uses a highly developed keyword hierarchy to cluster genes by shared keywords,
developing a kind of literature networks of genes. This tool is still in development. Courtesy of Ray Dingeldine.



your data and gene IDs to be read by the program.
However, the program has a relatively well-
developed online help and tutorial. Products such as
this may help investigators to more rapidly uncover
pathways of interest in their system without an
exhaustive literature search of thousands of genes.
Other new informatic tools can also help add to data
garnered from manual searching. For example Ray
Dingeldine at Emory has been working to adapt a
literature?array linking tool so as to make it a more
broadly useful for neuroscientists (Figure 6), and
Jenssen et al have developed PubGene (figure 7),
www.pubgene.org; ( Jenssen, Laegreid et al. 2001).

Pubgene
Pubgene is a “gene-to-gene co-citation network for
13,712 named human genes.” ( Jenssen, Laegreid et
al. 2001) To develop the initial pubgene database,
Jenssen et al. compiled text and abstracts from
millions of medline records and gene identifiers
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were found (Official Gene symbols in Locuslink
were used as the identifiers). Co-occurences were
identified and a network of relationships based on
the frequency of co-citation were compiled and
databased. This database now can be searched with
an input gene list and expression values; Up-
regulated genes are marked as positive and down-
regulated genes are marked as negative in this list.
Relationships between genes identified on the array
are depicted along with coding of the direction of
the gene?s regulation in the input data set. Other
investigators have developed similar tools based on
Genbank accession numbers (www.array.ucsd.edu).
This database uses medline keywords to help place
genes into functional categories and identify
relationships.

Unfortunately, these tools identify about 40 to 50
percent of gene co-occurences that are known at
best. For the example shown in Figure 7, intensive

FIGURE 7

An example of a Pubgene output: We performed a Pubgene analysis on a short list of differentially
expressed genes from an experiment comparing two neural progenitor-containing cultures. We
submitted 136 official gene names (Locus Link) that were differentially expressed between the two
conditions and their ratios together in one file at the Pubgene website (www.pubgene.org). Twenty five
of the 136 genes had literature identified neighbors, which were depicted in 10 images displaying the
literature network and direction of interaction. One such image is presented here (A). When any of the
nodes on this network are clicked, an expanded network is displayed (B).

B)A)

Rank 4: Symbol MYC scored 8.303
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manual literature searching, as expected, identified
a much richer list of genes involved in cell cycle and
DNA repair that were regulated. Although this
manual approach took several weeks, it provided a
depth greater than Pubgene in its current
incarnation, but at much greater time cost. For ESTs
or less studied genes, this tool will be even less
useful. Even so, these tools can identify
relationships, and even disease associations that
were previously not well appreciated in known
genes by creating complex networks. Other widely
used tools, such as Locuslink and Genecards
databases also are useful aids for annotating gene
expression lists on a gene-by-gene basis. However,
how does one go about annotating and exploring
the myriad ESTs and less studied genes? 

One can start by “virtual northern blotting” —
searching EST hits in sequenced libraries at NCBI
such as Unigene and compiling them across tissues,
i.e. BLASTing EST databases to identify in as semi
quantitative manner the tissue distribution of
expression of a given novel transcript. Data from
library sequencing projects involving SAGE is
growing and also can be used to identify tissues that
a gene is expressed in. But SAGE libraries currently
comprise only a small subset of tissues and
conditions (http://www.ncbi.nlm.nih.gov/geo/). 

TABLE 2

Reprinted by permission from Nature Reviews Neuroscience Vol 2 (6): 437 copyright (2001) Macmillan Magazines Ltd.



While the need to find a suitable storage system
may not be evident when running only a few arrays,
once a number of experiments have been run, the
need for a database solution becomes more serious.
Several commercial (Affymetrix, Axon Instruments,
Biodiscovery, Silicon Genetics), are just a few of the
vendors with widely used products that have some
databasing functions and shareware (eg. BASE;
http://base.thep.lu.se/,(Saal 2002, in press) options
are available for local storage and manipulation of
microarray data. We are currently implementing  A)
B) Rank 4: Symbol MYC scored 8.303 BioArray
Software Environment (BASE) on our laboratory
Linux server for databasing of our own local
experiments. One can also access Internet-based
databases where large number of experiments are
stored in a free environment, such as GEO, the
Stanford Microarray Database, and Dragon. Many
laboratories find that Excel or locally developed
databases suffice for their individual needs, although
as discussed below, the public databases have large
advantages for the field. With great foresight, the
MGEM group has developed standards for the
minimal information about a microarray
experiment and developed a format and language
for describing microarray experiments that has been
widely accepted. This will greatly facilitate data
sharing with large public databases. 

The need for large public databases for gene
expression annotation and analysis. 
It is clear that large public databases compiling
already performed microarray experiments could
be a huge advance in this area. For example, at this
point, thousands of microarray hybridizations have
been done on the Affymetrix platform, which uses a
standard set of non-custom arrays. Suc h databases
have been proposed and standards have been
adopted, but resistance against such sharing still
remains. For many reasons, we and others believe
that data sharing will have huge benefits and should
be mandated (Brazma, Hingamp et al. 2001;
Geschwind 2001). One simple advantage for local

data sharing of gene expression data on commonly
used arrays is the availability of information on
unknown genes across a large number of tissues,
stages and experimental conditions that could be
useful in assigning functional classes to unknown
genes. 

Any database system designed for arrays should
take into account the common language and
standards that has been developed for this purpose.
The minimal information about a microarray
experiment (MIAME) developed by the Microarray
Gene Expression Group (MGED) has been agreed
upon as a standard that should be used by all
groups. The actual form that the shared data could
take depends upon its use, and each form has
advantages and disadvantages (Table 2). At least
ratios, but optimally raw expression signal and
background values should be made available. The
benefits of such sharing to the community and
individual investigator are clear (Brazma, Hingamp
et al. 2001; Geschwind 2001). A real world example
of use of unrelated experiments in different tissues
to interpret a microarray experiment is presented
below, along with other examples of sophisticated
analytic and informatic methods. 
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6. DATABASES
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A recent example of data reduction, clustering,
mining of local array databases and annotation by
chromosomal location and confirmation of
informatic-based hypothesis. 

Paul Mischel, Stan Nelson, Tim Cloughsey and
colleagues at UCLA wanted to determine whether
certain brain tumors have a unique molecular
signature. It was already thought that certain growth
factor receptor pathways were altered in certain brain
tumors. They designed an experiment using
Affymetrix arrays with 12,600 genes to determine
whether expression profiling could be used to identify
subclasses of GFR and non-GFR over-expressing
tumors (Mischel et al. 2002). 

Data reduction. They first narrowed down the
potential gene list by removing genes that don?t show
much variation between arrays. Such genes are
unlikely to contribute to the ability distinguish
between groups within the samples since they don?t
vary much. This identified about 4000 genes with co-
efficient of variation over 0.5. This remaining list of
genes was used to perform unsupervised hierarchical
clustering from which 3 groups were clearly
identified. One of these groups was GFR+ and the
other two, GFR-. Multidimensional scaling led to 3
distinct clusters of balls, demonstrating the same
groups. By further constraining the list by setting a
differential expression threshold of 1.5 fold, 90 genes
were identified that could define 3 clusters of brain
tumors, 2 clusters containing tumors that were
growth factor receptor negative, and one cluster that
was postitive by immunocytochemistry. Leave-one-
out cross validation analysis, coupled with weighted
gene voting algorithm, such as applied in Pomeroy,
Tamayo et al. (2002) was applied to 13 new samples,
which were correctly classified by their pattern of
gene expression into the 3 clusters, two of which were
GFR-. The next question was, what was the difference
between the two groups of GFR- clusters? 

Assessing chromosomal location using genome
databases. Bioinformatics had been used to annotate
the array to map each gene to its precise

chromosomal location. Simple resources at NCBI
such as Locus Link provide such mapping data in
human and homologues in other species, where
known. Another new resource that may be useful for
such searches is “The Gene Resource Locator”, which
has assembled gene maps, expression profiling data,
and splicing data that allows the user to search and
view information via a dynamic web viewer
(http://grl.gi.k.u-tokyo.ac.jp). 

The chromosome mapping demonstrated that some
genes in one cluster of GFR- tumors mapped to a
contiguous locus in the human genome. This
suggested a region of genomic amplification or other
means of co-regulation of this class of genes. This
was further supported by the finding that all genes in
that region present on the array were up-regulated in
that cluster and that duplications in this region
associated with the same category of brain tumors
had been previously reported, suggesting this pattern
of gene expression was associated with amplification
of contiguous genes. Could this just be a co-incidence
— are they always co-regulated and this has nothing
to do with tumor specific transcriptional regulation? 

Using databases of other array experiments to
annotate gene functions. Because a local database of
all Affymetrix experiments performed through the
UCLA array facility was available, these investigators
were able to ask if these genes were typically co-
regulated. They assessed 368 experiments present in
the array core database to ask if this set of nearby ge
nes? expressions were correlated in any of the
previous experiments in the database. No correlation
was found, supporting the hypothesis that their co-
regulation was specific to the underlying tumor
biology being studied.

Validate informatic hypotheses prospectively. To
validate the predictive value of these clusters and their
reflection of underlying different biology of brain
tumor classes and the finding of possible
chromosomal duplication, 16 more cases from
various sources were successfully used to predict GFR
status based on gene expression with high accuracy. 

7. DATA MINING AND ANNOTATION BY CHROMOSOME
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Regulation of gene transcription is arguably the
most important step in regulation of proteins
expressed in a cell. It is very complex, highly
regulated and usually depends on promoter
sequences to which transcription factors bind that
are typically located upstream of the transcription
start site. Enhancer elements are also important and
have a more variable location, and can be intronic,
or more than 1 kb upstream of the start site.
Complex patterns of gene regulation in Yeast and
eukaryotes analyzed by microarrays has allowed
identification of promoter regions in these
organisms (Werner 2000; Pilpel, Sudarsanam et al.
2001; Werner 2001; Werner 2001; Brazma, Jonassen
et al. 1998; Brazma, Jonassen et al. 1998). 

Identify co-regulated genes. We performed a
microarray comparison of neural progenitor
cultures enriched in neural stem cells (NS) to more
differentiated cultures to identify genes enriched in
neural stem cells (eg. Geschwind et al. 2001). A large
number of clones enriched in the NS condition
were identified. Northern blotting and in situ
hybridization confirmed differential expression.
Unfortunately, we did not have microarray
expressio n data on a large number of conditions or
time points during development that would permit
identifying genes that appeared co-regulated, such
has been done in Yeast and prokaryotes. But, we
were able to use in situ hybridization to identify
genes enriched in embryonic germinal zones.

Collect 5kb upstream of transcription start site.
We inferred that the shared temporal and spatial
expression pattern may allow the identification of
promoter regions responsible for the germinal zone
pattern. Using NCBI, we found sequences up to 5kb
upstream of ATG for the human homologues of 8
genes with strong VZ pattern. Tracer, a transcript
sequence retrieval software from Stanford with
various sequence retrieval capabilities, streamlined
this process by allowing the user to find the
upstream sequence to a given transcript sequence
for a gene given its LocusLink ID number. We used
the Repeatmasker Web Server to mask the repeat

regions in the promoter regions of interest
(http://repeatmasker.genome.washington.edu/cgi
bin/ RepeatMasker) and performed the next stages
with and without masking. Initially, the sequences
were split into segments of up to 500 bp, with 100
bp overlap where appropriate, i.e. the segments
were not separated by masked regions. 

Perform similarity search to identify shared
sequences. The 5?regions were then sent to MEME
(http://meme.sdsc.edu/meme/website/meme-
intro.html), which searches for regions of shared
similarity among the sequences submitted. Initially
one had the inconvenience of fragmenting the large
submissions, but the MEME server has been
upgraded to allow much larger submissions,
simplifying this process (Grundy, Bailey et al. 1997).
Sequences that are identified through MEME
submission were then sent to MAST, which searches
in other databases (eg. nr at NCBI;
http://meme.sdsc.edu/meme/website/mast-
intro.html) to find other genes that share the motif
in their upstream sequences. The eukaryotic
promotor dabase (EPD), which provides a list of
sequences 500 bp upstream of the beginning of
transcription site (“promoter regions”) for over 1400
genes is another one of the databases that MAST
can search (Praz, Perier et al. 2002). Unfortunately,
the database is still small; however, it provides
insight into the types of genes that may share
similar motifs, as those being investigated. A flow
chart summarizing the entire process is shown in
Figure 8. Other tools such as SCANace and
AlignAce can be used to identify putative shared
regulatory regions (Roth, Hughes et al. 1998),
http://arep.med.harvard.edu/mrnadata/mrnasoft.
html. 

Follow-up interesting shared sequences to
identify putative transcription factor binding
sites. We identified several interesting putative
regulatory regions, including a 50 bp sequence,
which was subsequently submitted to Tfsitescan at
IFTI (http://www.ifti.org) to determine whether
any known transcription factor binding sites lay

8. USING MICROARRAYS TO STUDY UNDERLYING REGULATORY MECHANISMS
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and focusing on rare motifs, or several sites
occurring together in a particular pattern increases
the likelihood of identifying functionally relevant
regulatory regions (Hughes, Estep et al. 2000;
Werner 2000) We have also simply searched the
5?sequences for known regulatory motifs, using
software such` as Transfac (Quandt, Frech et al.
1995). Again, this results in a large number of hits,
so it helps to filter the data by focusing on patterns
and groupings, rather than individual motifs.
Sophisticated commercial applications are available
for this purpose http://www.genomatix.de/
(Werner 2001), as well as non-commercial
shareware (Roth, Hughes et al. 1998). 

within this 50 bp sequence. Four genes having this
motif were identified in the human genome, two of
which were identified in our microarray study, and
another of which was previously known to be
enriched in the mouse embryonic ventricular zone,
providing some confirmation that this motif might
be meaningful. 

Pitfalls/Suggestions. This kind of analysis
identified a large number of motifs and the problem
is identifying which motifs are important. Since
transcription factor binding sites are small, such
motifs occur frequently by chance in the genome.
Therefore, statistical validation that the sequence is
over-represented in the genes in question is critical

FIGURE 8

Promotor/Enhancer Motif Search: This provides an example of the steps that one might take to identify
common regulatory elements. This area of informatics and computational biology is in its infancy and
it will be valuable to spend some time upfront investigating other resources prior to embarking on this
path. For example Other tools such as SCANace can be used to identify putative shared regulatory
regions
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Bioinformatic analysis of arrays is in a very early
stage. Even so, several options for combining array
databases or gene lists with other relevant databases
exist, some of which have been discussed here.
These approaches clearly highlight the need for
large publicly accessible databases of gene
expression data culled from microarray experiments
using similar arrays. In addition, other databases of
genome-wide expression, such as GENSAT, which
aims to offer access to in situ expression data (in
mouse) on all genes in the CNS, offer the potential
for unprecedented annotation of the genome. As
these resources develop, the idea that microarray
experiments will really begin after the list of
differentially expressed genes is generated will be
realized.
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10. RESOURCES

Open source code: (http://www.open-bio.org)

Arrayit.com: (http://www.arrayit.com)

Stanford page (brown): (http://cmgm.stanford.edu/pbrown/)

UCLA web page: (http://www.genetics.ucla.edu/microarray/)

TIGR:( http://www.tigr.org/)

DeRisi: (http://derisilab.ucsf.edu/)

NCGR: (http://www.ncgr.org/)

Stanford Microarray database http://genome-www5.stanford.edu/MicroArray/SMD/

Listing Microarray databases: http://www.Biologie.ens.fr/en/genetiqu/puces/bddeng.html

European Bioinformatics Institute: http://www.ebi.ac.uk/microarray/index.html

Telechem electronic library on microarray topics http://arrayit.com/e- library/

Papers and Links: http://linkage.rockefeller.edu/wli/microarray/

Microarray analysis R program http://www.stat.uni-muenchen.de/~strimmer/rexpress.html

YF Leung: Database software reviews

http://ihome.cuhk.edu.hk/~b400559/arraysoft.html#Database%20Software

Nucleic Acids Research 2002 Database issue http://nar.oupjournals.org/content/vol30/issue1/

Harvard-Lipper Center for computational genomics http://arep.med.harvard.edu/



© 2002 Geschwind, Dougherty, Kudo, and Karsten

Beyond The Gene List: Using Bioinformatics To Make Sense Out Of Array Data 19

REFERENCES

Becker, K. G. (2001). "The sharing of cDNA microarray data." Nat Rev Neurosci 2(6): 438-40.
Brazma, A., P. Hingamp, et al. (2001). "Minimum information about a microarray experiment

(MIAME)-toward standards for microarray data." Nat Genet 29(4): 365-71.
Brazma, A., I. Jonassen, et al. (1998). "Approaches to the automatic discovery of patterns in

biosequences." J Comput Biol 5(2): 279-305.
Brazma, A., I. Jonassen, et al. (1998). "Predicting gene regulatory elements in silico on a genomic

scale." Genome Res 8(11): 1202-15.
Brown, P. O. and D. Botstein (1999). "Exploring the new world of the genome with DNA

microarrays." Nat Genet 21(1 Suppl): 33-7.
Cirelli, C. and G. Tononi (1999). "Differences in brain gene expression between sleep and waking as

revealed by mRNA differential display and cDNA microarray technology." J Sleep Res 8 Suppl 1: 44-52.
Dahlquist, K. D., N. Salomonis, et al. (2002). "GenMAPP, a new tool for viewing and analyzing

microarray data on biological pathways." Nat Genet 31(1): 19-20.
DeRisi, J. L. and V. R. Iyer (1999). "Genomics and array technology." Curr Opin Oncol 11(1): 76-9.
DeRisi, J. L., V. R. Iyer, et al. (1997). "Exploring the metabolic and genetic control of gene expression

on a genomic scale." Science 278(5338): 680-6.
Eberwine, J., H. Yeh, et al. (1992). "Analysis of gene expression in single live neurons." Proc Natl Acad

Sci U S A 89(7): 3010-4.
Geschwind, D. H. (2000). "Mice, microarrays, and the genetic diversity of the brain." Proc Natl Acad

Sci U S A 97(20): 10676-8.
Geschwind, D. H. (2001). "Sharing gene expression data: an array of options." Nat Rev Neurosci 2(6):

435-8.
Geschwind, D. H., Gregg J (2002). Microarrays for the Neurosciences: An Essential Guide.

Cambridge, MA, The MIT Press.
Geschwind DH, Ou J, Easterday MC, Dougherty JD, Jackson RJ, Chen Z, Antoine H, Terskikh A,

Weissman IL, Nelson SF, Kornblum HI (2001). A genetic analysis of neural progenitor
differentiation. Neuron 29:325-339. 

Ginsberg (2001). Gene Expression Profiling Using Single Cell Microdissection Combined with cDNA
Microarrays. Society for Neuroscience Short Course. ed. Geschwind DH. San Diego, Society for
Neuroscience.

Grundy, W. N., T. L. Bailey, et al. (1997). "Meta-MEME: motif-based hidden Markov models of
protein families." Comput Appl Biosci 13(4): 397-406.

Hughes, J. D., P. W. Estep, et al. (2000). "Computational identification of cis-regulatory elements
associated with groups of functionally related ge nes in Saccharomyces cerevisiae." J Mol Biol
296(5): 1205-14.

Jenssen, T. K., A. Laegreid, et al. (2001). "A literature network of human genes for high throughput
analysis of gene expression." Nat Genet 28(1): 21-8.

Karsten, S. L., Geschwind D. H. (2002). Gene expression analysis using cDNA microarrays. Current
Protocols in Neuroscience. 20: unit 4.28 (in press).

Karsten, S. L., V. M. Van Deerlin, et al. (2002). "An evaluation of tyramide signal amplification and
archived fixed and frozen tissue in microarray gene expression analysis." Nucleic Acids Res 30(2): E4.



© 2002 Geschwind, Dougherty, Kudo, and Karsten

Bioinformatics 200220

Li, C. and W. H. Wong (2001). "Model-based analysis of oligonucleotide arrays: expression index
computation and outlier detection." Proc Natl Acad Sci U S A 98(1): 31-6.

Lockhart, D. J., H. Dong, et al. (1996). "Expression monitoring by hybridization to highdensity
oligonucleotide arrays." Nat Biotechnol 14(13): 1675-80.

Lockhart, D. J. and E. A. Winzeler (2000). "Genomics, gene expression and DNA arrays." Nature
405(6788): 827-36.

Luo, Z. and D. H. Geschwind (2001). "Microarray applications in neuroscience." Neurobiol Dis 8(2):
183-93.

Miles, M. F. (2001). "Microarrays: lost in a storm of data?" Nat Rev Neurosci 2(6): 441-3.
Mirnics, K. (2001). "Microarrays in brain research: the good, the bad and the ugly." Nat Rev Neurosci

2(6): 444-7.
Mischel P, N. S., Cloughesey T et al. (2002). personal communication. D. Geschwind.
Nadon, R. and J. Shoemaker (2002). "Statistical issues with microarrays: processing and analysis."

Trends Genet 18(5): 265-71.
O'Dowd, B. F., T. Nguyen, et al. (1998). "Discovery of three novel G-protein-coupled receptor genes."

Genomics 47(2): 310-3.
Okubo, K., N. Hori, et al. (1992). "Large scale cDNA sequencing for analysis of quantitative and

qualitative aspects of gene expression." Nat Genet 2(3): 173-9.
Pilpel, Y., P. Sudarsanam, et al. (2001). "Identifying regulatory networks by combinatorial analysis of

promoter elements." Nat Genet 29(2): 153-9.
Pomeroy, S. L., P. Tamayo, et al. (2002). "Prediction of central nervous system embryonal tumour

outcome based on gene expression." Nature 415(6870): 436-42.
Praz, V., R. Perier, et al. (2002). "The Eukaryotic Promoter Database, EPD: new entry types and links

to gene expression data." Nucleic Acids Res 30(1): 322-4.
Quandt, K., K. Frech, et al. (1995). "MatInd and MatInspector: new fast and versatile tools for

detection of consensus matches in nucleotide sequence data." Nucleic Acids Res 23(23): 4878-84.
Roth, F. P., J. D. Hughes, et al. (1998). "Finding DNA regulatory motifs within unaligned noncoding

sequences clustered by whole-genome mRNA quantitation." Nat Biotechnol 16(10): 939-45.
Saal, L. H., Troein, C. Vallon-Christersson, J. Gruvberger,S. Borg ?. and Peterson C. (2002, in press).

"BioArray Software Environment: A Platform for Comprehensive Management and Analysis of
Microarray Data." Genome Biology.

Sabatti, C., S. L. Karsten, et al. (2002). "Thresholding rules for recovering a sparse signal from
microarray experiments." Math Biosci 176(1): 17-34.

Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression patterns with a
complementary DNA microarray." Science 270(5235): 467-70.

Speed, T. P. (2002). Statistical Analysis of Gene Expression Microarray Data. Boca Raton, Fl, CRC
Press LLC.

Stein, L. (2002). "Creating a bioinformatics nation." Nature 417(6885): 119-20.
Tusher, V. G., R. Tibshirani, et al. (2001). "Significance analysis of microarrays applied to the ionizing

radiation response." Proc Natl Acad Sci U S A 98(9): 5116-21.
Various Authors (1999). "The Chipping Forcast." Nature Genetics 21(Supplement).



© 2002 Geschwind, Dougherty, Kudo, and Karsten

Beyond The Gene List: Using Bioinformatics To Make Sense Out Of Array Data 21

Various Authors (2001). DNA Microarrays: The New Frontier in Gene Discovery and Gene
Expression Analysis. ed. DH Geschwind. Society for Neuroscience Short Course, San Diego,
Society for Neuroscience. Available at :
http://web.sfn.org/Template.cfm?Section=BrowsebyType&template=/Ecommerce/ProductDis
play.cfm&ProductID=87

Velculescu, V. E., L. Zhang, et al. (1995). "Serial analysis of gene expression." Science 270(5235): 484-7.
Wang, K., L. Gan, et al. (1999). "Monitoring gene expression profile changes in ovarian carcinomas

using cDNA microarray." Gene 229(1-2): 101-8.
Werner, T. (2000). "Identification and functional modelling of DNA sequence elements of

transcription." Brief Bioinform 1(4): 372-80.
Werner, T. (2001). "Cluster analysis and promoter modelling as bioinformatics tools for the

identification of target genes from expression array data." Pharmacogenomics 2(1): 25-36.
Werner, T. (2001). "The promoter connection." Nat Genet 29(2): 105-6.
Werner, T. (2001). "Target gene identification from expression array data by promoter analysis."

Biomol Eng 17(3): 87-94.
Yang, Y. H., Buckley, M. J. , Dudoit, S. and Speed, T.P. (2001). Normalization for cDNA Microarray

Data. SPIE BiOS. San Jose, Ca.




