Steps taken to make working program run properly on input file generated by local TBlastX

Bring up working program (i.e. Parse-Blast-revised.tru)

Change file path so it points to input file generated by local BlastN

Run program... “Wrong line in Evaluate score, line 1”” encountered

Turn on echo of input (uncomment line in InputBlast)

Last line read by program is “Score = 117 bits...”. Is the format of the Score line different
in CMR Blast compared to local Blast?

e Compare input files generated by the two programs. Indeed, there is a difference in the
lines related to score:

CMR Blast:
Score = 131 (25.7 bits), Expect = 2.7e-12, Sum P(3) = 2.7e-12
Identities = 67/109 (61%), Positives = 67/109 (61%), Strand = Minus / Plus

Local Blast:
Score = 46.0 bits (94), Expect = 1le-006
Identities = 25/48 (52%), Positives = 28/48 (58%)
Frame = +3 / +2

e [t’s now understandable why the program crashed reading the score. The program line that
failed was an error-checking line:

IF Size(field$) < 8 THEN CAUSE ERROR...

In the CMR Blast-generated file, the number of fields is certainly greater than the number
of fields in the local Blast-generated file. How many fields are there?

e [Insert line just before faulty line to read: MAT PRINT field$ and rerun program. This
statement prints out all values held within the array (or MATrix) field$

e The program crashes again (of course, since I didn’t fix anything), and now the last line is
six values, representing the six words of the last line of input.

e (Change the offending program line to read:

IF Size(field$) < 6 THEN CAUSE ERROR

e The only thing I'm getting from this line is the E-value. Check to make sure that the
E-value is in field it ought to be in. It’s in the sixth field. The next line assigns the sixth
field to E-value, so I’'m OK.

e Rerun program. Now error occurs in line:

IF Size(field$) <9 THEN CAUSE ERROR 2...

e [now know how to handle this. Moving the MAT PRINT field$ line, I find that the total
number of fields is really 3, not 9. Make the appropriate change and check whether the
value I’m extracting from this line (ID) is in the right field. It is.

e Rerun program. “Subscript out of bounds” Error occurs on the same input line but a
different program line:

IF field$(9) = "Plus" THEN...

I’m now sensitized to numbers of fields and see immediately that there are not 9 fields in
the input line (Identities = ...). In fact, there’s no “Plus” at all on the line. I check the input
file and instead of Plus/Minus strand information, TBlastX provides something to do with
“frame”, and it’s on the NEXT line. I need to read another line before checking for the
strand.

I steal from the same subroutine the following lines, which evidently reads the input file,
and insert it into the program before the line that checks for strand:

CALL InputBlast
CALL Explode(line$,field$," ()=%")

Rather than figure out how to interpret the frames of the query and the target, I’ll just save
both and worry about it later. So I insert the two statements:

LET query_orientation$ = field$(2)
LET target orientation$ = field$(4)

Rerun program. Seems to be running without error, so I stop it (Click File in upper left
corner, then Stop). Turn off input echoing (by putting a ! before PRINT line$ in
InputBlast).

Rerun program. Goes to completion... no it doesn’t. It crashes after processing many
queries, up until query Contig389-L. Check input file. That contig is the last one in the file.
Looks like the program doesn’t recognize the logical end of the file.

Scan program for anything related to end of file. Found it in Find segq. It says that end of
file is recognized by the word “Parameters”. Indeed, there is the word “Parameters” at the
end of the file generated by CMR-Blast. But there is no such word at the end of the locally
generated file.

Look for word comes uniquely at end of file. Change:

ELSE IF line$[1:10] = "Parameters" THEN ! Ran into end of file
to

ELSE IF line$[1:6] = "Matrix" THEN ! Ran into end of file
Rerun program. Goes to completion. Output looks OK,... except column 7 is always “ .
That can’t be right.
Check routine in program that prints output (Output hit; the only routine that has
statements that print to a file). The seventh item output is orientation$.
Where is orientation$ determined? 1 type locate orientation$. It gives me three lines... oh
yes! I obliterated the line that assigned a value to orientation$ and instead assigned values
to query_orientation$ and target orientation$. Now I need to print out these new variables
instead of the nonexistent orientation$.
In Output_hit, 1 replace the line:

PRINT #output: orientation$; comma$;

With
PRINT #output: query orientation$; comma$; target orientation$; commas$;

e Rerun program. Goes to completion. Output looks OK.

