
Implementing a PSSM program - 1

Bioinformatics and Bioengineering Summer Institute (2003)
Position-specific scoring matrices to search for repeated sequences

Implementing a PSSM program
I. Arrays
You’ve resolved to find all repeated sequences in the genome of Nostoc and have decided that a
PSSM is the way to go. You’ve collected all the sequences you can (see Notes from Monday),
and now you’re ready for a program that will make a PSSM out of the collection and run the
Nostoc genome through it, looking for those sequences that best match the repeated sequence
you already have. Fortunately, the guy in the next lab knows someone who picked up a PSSM
program from somewhere, so it should be pretty good.

You get the program and run it... no, take a look at it first, a program entitled PSSM.tru (in fact,
why not open it up now?). The file begins with an explanation of what it does. It seems to do
what you want, which is good. Skimming through the program, you see that it uses functions.
Since you’re acquainted with these, they don’t come as a shock. For example, you see a few
declared in the LIBRARIES and DECLARATIONS block, and later on (in the Main Program)
you see one of them, Inverse$, used:

CALL Analyze(Inverse$(genome$))

From your knowledge of functions, you can guess what this might mean. A function takes the
value within the parentheses, works with it, and then replaces itself with the value it comes up
with. So the statement probably means:
 CALL Analyze(inverted sequence of genome sequence)

OK, moving on to the first subroutine (Get_motifs), however, you’re stopped by what looks
like a very peculiar use of a function:
 LET motif$(motif) = field$(2)

You can’t guess what these functions mean, but presumably field$ takes the value 2 and
replaces itself with something appropriate, and likewise motif$ takes the value contained in the
variable motif and replaces itself with something else,... but then the statement makes no
sense! How do you put one value (returned by field$(2)) into another value (returned by
motif$(motif))? You can put values into variables (e.g. LET x = 2), but putting values
into values (e.g. LET 3 = 2) is nonsense!

You pursue this mystery, looking for a definition of the function motif$ that might explain
what it does, but nowhere in the program is there a FUNCTION motif$ statement, nor is there
a DECLARE FUNCTION motif$ statement in the LIBRARIES and DECLARATIONS block.
What kind of function is this? Investigating further, you find two kinds of statements you’ve
never heard of before:
 DIM motif$(1) ! Array contains set of motifs [in VARIABLES block]

and
 MAT REDIM motif$(motif) ! Increase size of arrays... [in Get_motif]

Implementing a PSSM program - 2

Program A

Program B

Fig. 1: Organization of variables in two
programs. Program A stores words in separate
variables. Program B stores the same words in a
single array.

You seem to have run into a different beast altogether: not a function but an “array”.

SQ1. How does an array seem to differ from a function?

I.A. What are arrays?
Suppose you wanted for some reason to translated numbers into their English representations.
You might then set up the following variables:
 LET one_in_English$ = “one”
 LET two_in_English$ = “two”
 LET three_in_English$ = “three”

(Note that the variables all end in $, signifying that they store text, not numbers). Then, you
could use these variables in the following way (Program A):

IF digit = 1 THEN
 PRINT one_in_English$
ELSE IF digit = 2 THEN
 PRINT two_in_English$
ELSE IF digit = 3 THEN ...

Clearly this would be a very tiring program to write!
The problem is that you’ve set up ten separate boxes,
and you have to decide by tedious logic which box
you need at a specific time. Suppose instead that you
set up a linked collection of boxes (Fig. 1). Then you
could capture all of Program A by a single statement
(Program B):

PRINT digit_in_English$(digit)

(where the number in parentheses indicates the box
you want to access). This is quite an economy!
Collections of boxes of this sort are called arrays, but
you could also think of them as tables. To exploit the utility of arrays, you need to tell True Basic
three things:

1. The name that will be interpreted as an array (so as not to confuse it with a function)
2. The type of information that will be stored within it (numeric or text)
3. The number of boxes to set up

All of this is accomplished by DIM statements (DIM is short for “dimension”). The following
statement identifies the variable digit_in_English$ as an array (because it is defined by a DIM
statement and not a DECLARE FUNCTION statement), specifies that it will store text (because
it ends with a $), and sets aside 9 boxes:

DIM digit_in_English$(9)

You can stock the array in the usual (tedious) way:
LET digit_in_English(1) = “one”
LET digit_in_English(2) = “two”

and so forth.

Implementing a PSSM program - 3

What about zero? There’s no zeroth box defined. By default, counting of array elements begins
with one, but you can start with any number you like. Here are some examples:

DIM digit_in_English(0:9) ! First box is labeled 0, last is labeled 9
DIM digit_in_English(1:9) ! Equivalent to DIM digit_in_English(9)
DIM rainfall_in_Richmond(1999:2003)

The range of numbers must be contiguous, however.

SQ2. Define an array variable that stores the number of instances that planes arrived at
their destinations times relative to the scheduled time. Presume that the range of
possible times in minutes is 60 minutes early to 120 minutes late.

I.B. Multidimensional arrays
Arrays can be used to organize more complicated information. Recall that the first step in
construction of a PSSM is to count the different nucleotides at each position of a set of aligned
sequences. The sequences themselves can be stored in an array (PSSM.tru stores them in the
array called motif$). The count of nucleotides requires a box for each nucleotide and at each
position (Fig. 2), which can be captured in a two-dimensional array. Two dimensional arrays can
be visualized as tables, as shown (it’s our choice which dimension we treat as columns and
which as rows).

However, we needn’t be limited by our ability to visualize tables. True Basic lets you define
arrays with multiple dimensions. For example, the following 3-dimensional array could store the
number of mutational changes in a set of sequences from several organisms, at different
positions, to different nucleotides:

 DIM mutations_in_motif(7,14,4) ! 7 organisms, 14 positions, 4 nucleotides

SQ3. How many boxes will be set aside for mutations_in_motif by the DIM statement
above?

 motif$(5)
1 GTACAGTCTGTTAC
2 GTAGGCTCTGTTAC
3 GTAACAAAGACTAC
4 GTAACATAAGCTAC

motif

5 GTAACATGAGATAC

nucleotide_count(14,4)
 position
 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 (A) 0 0 5 3 1 3 1 2 2 1 1 0 5 0
2 (C) 0 0 0 1 3 1 0 2 0 0 2 0 0 5
3 (G) 5 0 0 1 1 1 0 1 1 4 0 0 0 0

nuc

4 (T) 0 5 0 0 0 0 4 0 2 0 2 5 0 0

Fig 2: Possible representation of two arrays.

Implementing a PSSM program - 4

I.C. Arrays of variable extents

If the DIM statement sets aside a specified number of boxes for an array, what do you do when
you don’t know how big the array should be? The program PSSM.tru reads in a list of sequences
from which the PSSM will be constructed. But the program doesn’t know how many sequences
will be read (and neither do you – do you want to sit there counting a few hundred sequences?).
What then?

There are three solutions:

1. Make up a number that’s certain to be bigger than any conceivable number of sequences
the program will ever need to read. For example:

 DIM motif$(1000)

This has the advantage of simplicity, however there is a danger that the future will
surprise you and the number you choose won’t be high enough. You can’t solve this
problem by choosing a ridiculously high number (like DIM motif$(10E100)), because
True Basic will dutifully attempt to set aside that many boxes, with dire results. Also,
some operations (like some sorting routines) requires that the extent of the array
accurately reflect what is actually used.

2. Follow the first strategy, but after all the sequences are read in, adjust the extent to make
it reflect reality:

DIM motif$(1000)

DO WHILE MORE #motif_file ! Go through the loop while there’s still data
 [read a sequence into motif$]
 LET total_sequences = total_sequences + 1 ! count as you go
LOOP
MAT REDIM motif$(total_sequences)

The latter statement redimensions the array motif$ so that the total number of boxes set
aside is given by the variable total_sequences.

3. Expand the array as you go:
DIM motif$(1) ! This statement just gets the array on the books with a minimal size
DO WHILE MORE #motif_file
 LET total_sequences = total_sequences + 1 ! Count as you go
 MAT REDIM motif$(total_sequences) ! Increases size of array by 1

[read a sequence into motif$]
LOOP

The advantage of this method is that the array is always as big as need by the present
data.

SQ4. Why is the extent of motif$ set to 1 in solution #3?

I.D. Array operations and functions
Just as the statement to redimension an array begain with MAT, so do array operations in
general. Thus, the assignment of the values of one array to another is:

Implementing a PSSM program - 5

 MAT array1 = array2

True Basic was written by two professors at Dartmouth, and as you might imagine, one of their
big interests was academic use of the language. As a result, the language is very good for matrix
operations (as would be useful in Linear Algebra). Built-in functions support things like matrix
multiplication, inversion, transposition, and many others.

II. Common irritations and quick fixes
You still haven’t run the program, so resist no further and go for it.

You probably got a blank screen (note Finished. Click mouse or press any key). However, if you
click out of the output window or go to the command window, you’ll find the unwelcome news
that an apparently critical file was not found.1 Statement 121 is implicated, so scroll down to it
(note that there’s a very useful indicator at the bottom of the window telling you which line and
character the cursor is sitting on). Statement 121 says:
 OPEN #motif_file: NAME motif_file$, ORG text, ACCESS input, CREATE old

Add this knowledge to the error message, and you have to conclude that there is a file problem
somehow. What can you find out about motif_file and motif_file$? To help you in this
True Basic provides the locate command. Go to the command window and type:
 locate motif_file

And then
 locate motif_file$

SQ5. What do you find is the value set for motif_file$? What problem do you see? What
would be a better value for motif_file$ [hint: check the web page for Wednesday].
Make the appropriate change in the program.

Try running the program again. Still no good, I bet.

SQ6. What line number is the error this time? Go there and identify the offending
statement. What section of the program is the statement in?

If the program stopped at statement 131, then the motif file was evidently opened properly but
we’re still stuck in the subroutine called Get_motifs. Simple minded as I am, I would suppose
that there’s a problem in getting the motifs, i.e. reading the motif file. Why is that?

At this point, one is tempted to read the instructions.

SQ7. From the comments at the beginning of the Get_motifs subroutine and the comments
at the very beginning of the file, what does the program expect in the way of motifs?

SQ8. Are you providing the program with what it expects? (can’t tell without looking)

SQ9. Find a way to fix the problem.
In such situations there are two major classes of solutions: Change the input file or change the
routine that reads it. You can go either way with this one. Take your pick.

1 You may get an irritating white box in the source code window. To get rid of it, go to the error window and x out
of it.

Implementing a PSSM program - 6

SQ10. Try doing it the other way.
Note that you don’t have to understand everything about the program. Just from the description
of what the program is trying to do, you can make a pretty good guess how to fix the problem.

Presuming you got past this problem, run it again… [crash]. Good grief! You begin to wonder if
this program ever worked! What’s the error this time? You’re told (again after clicking out of the
result window) that the program tried to take the log of zero or a negative number in statement
183. Going there, you find that there are two possible logs that could be at fault. Which is it?

To answer that question, insert just prior to statement 183 the following:
PRINT p, nucleotide, log_q(p,nucleotide),numerator, denominator

This will print out the values of all variables in the statement that caused the crash. Run the
program again. Of course it crashed, but that’s no surprise. The difference is that it told you what
were its final thoughts. By matching the output with the list of variables printed (e.g. on the last
line, p=1, nucleotide=2,…), you can see what the problem is.2

SQ11. What values caused the program to attempt to calculate an illegal log?

Use the same locate command to find where this variable is set and to what (or just scan the
immediate vicinity to find out). You’ll see that the variable is set to something called
nucleotide_count(p,nucleotide). This is an array of values related to nucleotide counts.

SQ12. Is it possible for a nucleotide count to be zero? If you’re unsure on this point, go
back to the table of nucleotide counts we constructed on Monday.

How in the world did the original programmer avoid this problem? Maybe he/she messed with
the data by hand, replacing zeros with some nonzero number. Maybe the data set was so massive
that there were no data values (every nucleotide will be present at any position, given a large
enough data set). Who knows? What can YOU do about it?

SQ13. Nothing’s illegal about a taking the log of a number that’s almost zero. Add a
statement that checks to see if the variable is zero and, if so, changes it to 1E-47 (1 times 10
to the –47th).

If you’ve accomplished this, then this time the program may run.

III. Improving the program
 The program may now work, but it’s certainly not giving the answers you expected.

SQ14. What sequences did you expect? (It might help to recall the scientific problem from
Monday’s notes)

Here’s another good time to read the instructions. How is it constructing the PSSM? Go to the
Main Program and try to find the routine that does this. There’s nothing named
Construct_PSSM, but there’s a lot of actions that should look to you as if they’re involved in
the construction. Go to these routines and read how they describe themselves.

2 Programmers: Yes, True Basic includes a programming environment that allows you to monitor the contents of
variables without adding extraneous statements.

Implementing a PSSM program - 7

SQ15. How does the program calculate the PSSM? How does it differ from how you would
want to calculate a PSSM?

SQ16. Find the section of the program where the difference ought to be and see if you can
change it to do what you think is right.

Note well! In running this data myself I noticed that there is a mistake in the program. So
don’t expect to get reasonable results even after you put in all the fixes and improvements.
We’ll discuss the final resolution tomorrow.

